【題目】(2013年四川攀枝花12分)如圖,拋物線y=ax2+bx+c經(jīng)過點A(﹣3,0),B(1.0),C(0,﹣3).

(1)求拋物線的解析式;

(2)若點P為第三象限內拋物線上的一點,設PAC的面積為S,求S的最大值并求出此時點P的坐標;

(3)設拋物線的頂點為D,DEx軸于點E,在y軸上是否存在點M,使得ADM是直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

【答案】解:(1)由于拋物線y=ax2+bx+c經(jīng)過A(﹣3,0),B(1,0),可設拋物線的解析式為:y=a(x+3)(x﹣1),

將C點坐標(0,﹣3)代入,得:a(0+3)(0﹣1)=5,解得 a=1。

拋物線的解析式為:y=(x+3)(x﹣1),即y=x2+2x﹣3。

(2)如圖1,過點P作x軸的垂線,交AC于點N.

設直線AC的解析式為y=kx+m,由題意,得,解得。

直線AC的解析式為:y=﹣x﹣3。

設P點坐標為(x,x2+2x﹣3),

則點N的坐標為(x,﹣x﹣3),

PN=PE﹣NE=﹣(x2+2x﹣3)+(﹣x﹣3)=﹣x2﹣3x。

SPAC=SPAN+SPCN

。

當x=時,S有最大值,此時點P的坐標為(。

(3)在y軸上是否存在點M,能夠使得ADE是直角三角形。理由如下:

y=x2+2x﹣3=y=(x+1)2﹣4,頂點D的坐標為(﹣1,﹣4)

A(﹣3,0),AD2=(﹣1+3)2+(﹣4﹣0)2=20。

設點M的坐標為(0,t),分三種情況進行討論:

當A為直角頂點時,如圖2,

由勾股定理,得AM2+AD2=DM2,

即(0+3)2+(t﹣0)2+20=(0+1)2+(t+4)2,解得t=。

點M的坐標為(0,。

當D為直角頂點時,如圖3

由勾股定理,得DM2+AD2=AM2,

即(0+1)2+(t+4)2+20=(0+3)2+(t﹣0)2,解得t=。

點M的坐標為(0,。

當M為直角頂點時,如圖4

由勾股定理,得AM2+DM2=AD2,

即(0+3)2+(t﹣0)2+(0+1)2+(t+4)2=20,解得t=﹣1或﹣3。

點M的坐標為(0,﹣1)或(0,﹣3)。

綜上所述,在y軸上存在點M,能夠使得ADE是直角三角形,此時點M的坐標為(0,)或(0,)或(0,﹣1)或(0,﹣3)。

解析(1)已知拋物線上的三點坐標,利用待定系數(shù)法可求出該二次函數(shù)的解析式

(2)過點P作x軸的垂線,交AC于點N,先運用待定系數(shù)法求出直線AC的解析式,設P點坐標為(x,x2+2x﹣3),根據(jù)AC的解析式表示出點N的坐標,再根據(jù)SPAC=SPAN+SPCN就可以表示出PAC的面積,運用頂點式就可以求出結論。

(3)分三種情況進行討論:以A為直角頂點;以D為直角頂點;以M為直角頂點;設點M的坐標為(0,t),根據(jù)勾股定理列出方程,求出t的值即可。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B為格點

(Ⅰ)AB的長等于__

(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中求作一點C,使得CA=CB且ABC的面積等于,并簡要說明點C的位置是如何找到的__________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知下列命題:

a>b,則c﹣a<c﹣b;

a>0,則=a;

對角線互相平分且相等的四邊形是菱形;

如果兩條弧相等,那么它們所對的圓心角相等.

其中原命題與逆命題均為真命題的個數(shù)是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與點A、E重合),在AE同側分別作等邊三角形ABC和等邊三角形CDE,ADBE交于點OADBC交于點P,BECD交于點Q,連接PQ.以下五個結論:①ADBE;②APBQ;③PQAE;④DEDP;⑤∠AOE120°;其中正確結論的個數(shù)為( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,現(xiàn)有一個大正方形和四個一樣的小正方形,小明、小聰、小方分別用這些正方形設計出了圖1,圖2,圖3三種圖案:

1)根據(jù)圖1,圖2中所標數(shù)據(jù),求出大正方形和小正方形的邊長分別是多少厘米?

2)若圖3中四個小正方形的重疊部分也是三個一樣的小正方形,求大正方形中未被小正方形覆蓋的陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC是等腰直角三角形,BAC= 90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BDCF成立.

1ABC繞點A逆時針旋轉θ(0°θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.

2ABC繞點A逆時針旋轉45°時,如圖3,延長DB交CF于點H.

求證:BDCF;

當AB=2,AD=3時,求線段DH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,反比例函數(shù)y的圖象與一次函數(shù)yk(x2)的圖象交點為A(3,2),B(x,y)

(1)求反比例函數(shù)與一次函數(shù)的解析式及B點坐標;

(2)Cy軸上的點,且滿足△ABC的面積為10,求C點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,剪兩張對邊平行且寬度相等的紙條隨意交叉疊放在一起,轉動其中一張,重合部分構成一個四邊形,則下列結論中不一定成立的是( 。

A. ABC=ADC,BAD=BCD B. AB=BC

C. AB=CD,AD=BC D. DAB+BCD=180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖(1),已知:在△ABC,BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D,證明:ABD≌△ACEDE=BD+CE;

(2)如圖(2),(1)中的條件改為:在△ABC中,AB=AC,D, A, E三點都在直線m上,并且有∠BDA=AEC=BAC=a,其中a為任意銳角或鈍角,請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案