【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D,證明:△ABD≌△ACE,DE=BD+CE;
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D, A, E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=a,其中a為任意銳角或鈍角,請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
【答案】(1)見解析;(2)成立,理由見解析;
【解析】
(1)根據(jù)BD⊥直線m,CE⊥直線m得∠BDA=∠CEA=90°,而∠BAC=90°,根據(jù)等角的余角相等得∠CAE=∠ABD,然后根據(jù)“AAS”可判斷△ADB≌△CEA,
則AE=BD,AD=CE,于是DE=AE+AD=BD+CE;
(2)利用∠BDA=∠BAC=α,則∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,進(jìn)而得出△ADB≌△CEA即可得出答案.
(1)∵BD⊥直線m,CE⊥直線m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°α,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2013年四川攀枝花12分)如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣3,0),B(1.0),C(0,﹣3).
(1)求拋物線的解析式;
(2)若點(diǎn)P為第三象限內(nèi)拋物線上的一點(diǎn),設(shè)△PAC的面積為S,求S的最大值并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)設(shè)拋物線的頂點(diǎn)為D,DE⊥x軸于點(diǎn)E,在y軸上是否存在點(diǎn)M,使得△ADM是直角三角形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉行“中國夢(mèng)校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表;
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績較好;
(3)計(jì)算兩隊(duì)決賽成績的方差并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A'.
已知:直線l和l外一點(diǎn)A.
求作:點(diǎn)A關(guān)于l的對(duì)稱點(diǎn)A'.
作法:①在l上任取一點(diǎn)P,以點(diǎn)P為圓心,PA長為半徑作孤,交l于點(diǎn)B;②以點(diǎn)B為圓心,AB長為半徑作弧,交弧AB于點(diǎn)A'. 點(diǎn)A'就是所求作的對(duì)稱點(diǎn).
由步驟①,得________
由步驟②,得________
將橫線上的內(nèi)容填寫完整,并說明點(diǎn)A與A'關(guān)于直線l對(duì)稱的理由________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在真角坐標(biāo)系中,矩形0ABC的頂點(diǎn)A,C在坐標(biāo)軸上,點(diǎn)B(4,2);過點(diǎn)D(0,3)和E(6,0)的直線分別與AB、BC交于點(diǎn)M、N.
(1)求直線DE的函數(shù)表達(dá)式和點(diǎn)M,N的坐標(biāo);
(2)若函數(shù)y=(k≠0,k為常數(shù))經(jīng)過點(diǎn)M,求該函數(shù)的表達(dá)式,并判定點(diǎn)N是否在該函數(shù)的圖象上:
(3)求△OMN的面積S;
(4)若函教y=(k≠0,k為常數(shù))的圖象與△BMN沒有交點(diǎn),清楚直接寫出k的取值范圈,不需解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)過A(4,0),B(1,3)兩點(diǎn),點(diǎn)C、B關(guān)于拋物線的對(duì)稱軸對(duì)稱,過點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H.
(1)求拋物線的表達(dá)式;
(2)求點(diǎn)C的坐標(biāo),并求出△ABC的面積;
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),且位于第四象限,是否存在這樣的點(diǎn)P,使得△ABP的面積為△ABC面積的2倍?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=(2m+3)x+m-1,
(1)若函數(shù)圖象經(jīng)過原點(diǎn),求m的值;
(2)若函數(shù)圖象在y軸上的截距為-3,求m的值;
(3)若該函數(shù)的值y隨自變量x的增大而減小,求m的取值范圍;
(4)該函數(shù)圖象不經(jīng)過第二象限,求m的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣某包裝生產(chǎn)企業(yè)承接了一批上海世博會(huì)的禮品盒制作業(yè)務(wù),為了確保質(zhì)量,該企業(yè)進(jìn)行試生產(chǎn).他們購得規(guī)格是的標(biāo)準(zhǔn)板材作為原材料,每張標(biāo)準(zhǔn)板材再按照裁法一或裁法二裁下型與型兩種板材.如圖甲所示.(單位)
(1)列出方程(組),求出圖甲中與的值;
(2)在試生產(chǎn)階段,若將625張標(biāo)準(zhǔn)板材用裁法一裁剪,125張標(biāo)準(zhǔn)板材用裁法二裁剪,再將得到的型與型板材做側(cè)面和底面,剛好可以做成圖乙的豎式與橫式兩種無蓋禮品盒.求可以做豎式與橫式兩種無蓋禮品盒各多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,△ABC中,AB=AC,AB的垂直平分線交邊AB于D點(diǎn),交邊AC于E點(diǎn),若△ABC與△EBC的周長分別是40cm,24cm,則AB= cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com