【題目】已知一次函數(shù)y=(2m+3)x+m-1,
(1)若函數(shù)圖象經(jīng)過原點(diǎn),求m的值;
(2)若函數(shù)圖象在y軸上的截距為-3,求m的值;
(3)若該函數(shù)的值y隨自變量x的增大而減小,求m的取值范圍;
(4)該函數(shù)圖象不經(jīng)過第二象限,求m的取值范圍;
【答案】(1);(2);(3);(4).
【解析】
(1)直接把(0,0)代入一次函數(shù)y=(2m+3)x+m-1求出m的值即可;
(2)把(0,-3)代入一次函數(shù)的解析式求出m的值即可;
(3)根據(jù)一次函數(shù)的性質(zhì)列出關(guān)于m的不等式求出m的取值范圍即可;
(4)根據(jù)一次函數(shù)的性質(zhì)列出關(guān)于m的不等式組求出m的取值范圍即可.
解:(1)∵函數(shù)圖象經(jīng)過原點(diǎn),
∴,解得;
(2)∵函數(shù)圖象在y軸上的截距為-3,
∴當(dāng)時(shí),,即,解得;
(3)∵該函數(shù)的值y隨自變量x的增大而減小,
即:2m+3<0,解得;
(4)∵該函數(shù)圖象不經(jīng)過第二象限,
即:,解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=的圖象與一次函數(shù)y=k(x-2)的圖象交點(diǎn)為A(3,2),B(x,y).
(1)求反比例函數(shù)與一次函數(shù)的解析式及B點(diǎn)坐標(biāo);
(2)若C是y軸上的點(diǎn),且滿足△ABC的面積為10,求C點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,已知△ABC≌△DBE,點(diǎn)D在AC上,BC與DE交于點(diǎn)P,若AD=DC=2.4,BC=4.1.
(1)若∠ABE=162°,∠DBC=30°,求∠CBE的度數(shù);
(2)求△DCP與△BPE的周長(zhǎng)和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D,證明:△ABD≌△ACE,DE=BD+CE;
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D, A, E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=a,其中a為任意銳角或鈍角,請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L上有三個(gè)正方形a,b,c,若a,c的面積分別為1和9,則b的面積為( )
A.8 B.9 C.10 D.11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是直線AB、CD外一點(diǎn),直線AB和ED相交于點(diǎn)F.
(1)如果AB∥CD,那么∠D=∠B+∠E嗎?
(2)如果∠D=∠B+∠E,那么AB與CD平行嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對(duì)角線AC與BD的交點(diǎn),M是BC邊上的動(dòng)點(diǎn)點(diǎn)M不與B,C重合,,CN與AB交于點(diǎn)N,連接OM,ON,下列五個(gè)結(jié)論:≌;≌;∽;;若,則的最小值是,其中正確結(jié)論的個(gè)數(shù)是
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,被直線所截,點(diǎn)是線段上的點(diǎn),過點(diǎn)作,連接,
(1)試說明.
(2)將線段沿著直線平移得到線段,如圖2,連接.若,當(dāng)時(shí),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
我們知道的幾何意義是在數(shù)軸上數(shù)對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,即,也就是說,表示在數(shù)軸上數(shù)與數(shù)對(duì)應(yīng)的點(diǎn)之間的距離;
例 1.解方程,因?yàn)樵跀?shù)軸上到原點(diǎn)的距離為的點(diǎn)對(duì)應(yīng)的數(shù)為,所以方程的解為.
例 2.解不等式,在數(shù)軸上找出的解(如圖),因?yàn)樵跀?shù)軸上到對(duì)應(yīng)的點(diǎn)的距離等于的點(diǎn)對(duì)應(yīng)的數(shù)為或,所以方程的解為或,因此不等式的解集為或.
參考閱讀材料,解答下列問題:
(1)方程的解為 ;
(2)解不等式:;
(3)解不等式:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com