【題目】如圖是邊長為1的正方形網(wǎng)格,△A1B1C1的頂點均在格點上.
(1)在該網(wǎng)格中畫出△A2B2C2(頂點均在格點上),使△A2B2C2∽△A1B1C1;
(2)請寫出(1)中作圖的主要步驟,并說明△A2B2C2和△A1B1C1相似的依據(jù).
【答案】(1)如圖所示,△A2B2C2即為所求見解析;(2)見解析.
【解析】
(1)根據(jù)相似三角形的判定,結(jié)合網(wǎng)格特點作圖即可;(2)利用勾股定理得出線段的長,并根據(jù)網(wǎng)格特點得出角的度數(shù),再依據(jù)相似三角形的判定求解可得.
(1)如圖所示,△A2B2C2即為所求;
(2)先取一格點A2,在水平方向上取A2C2=2,再在網(wǎng)格中取一格點B2,使∠C2A2B2=135°,且A2B2=,
則△A2B2C2∽△A1B1C1;
∵A1C1=4,∠C1A1B1=135°,A1B1=2,
∴,∠C2A2B2=∠C1A1B1,
∴△A2B2C2∽△A1B1C1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點P與點C重合,點Q、E、F分別在BC、AB、AC上(點E與點A、點B均不重合).
(1)當(dāng)AE=8時,求EF的長;
(2)設(shè)AE=x,矩形EFPQ的面積為y.
①求y與x的函數(shù)關(guān)系式;
②當(dāng)x為何值時,y有最大值,最大值是多少?
(3)當(dāng)矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運動(當(dāng)點P到達點B時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC,∠A、∠B、∠C之和為多少?為什么?
解:∠A+∠B+∠C=180°
理由:作∠ACD=∠A,并延長BC到E
∵∠ACD=∠ (已作)
AB∥CD( )
∴∠B= ( )
而∠ACB+∠ACD+∠DCE=180°
∴∠ACB+ + =180°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=和y=在第一象限內(nèi)的圖象如圖所示,點P在y=的圖象上,PC⊥x軸,交y=的圖象于點A,PD⊥y軸,交y=的圖象于點B,當(dāng)點P在y=的圖象上運動時,以下結(jié)論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積不會發(fā)生變化;其中一定正確的是( )
A. ①②③ B. ① C. ②③ D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】劉徵是我國古代最杰出的數(shù)學(xué)家之一,他在《九算術(shù)圓田術(shù))中用“割圓術(shù)”證明了圓面積的精確公式,并給出了計算圓周率的科學(xué)方法(注:圓周率=圓的周長與該圓直徑的比值)“割圓術(shù)”就是以“圓內(nèi)接正多邊形的面積”,來無限逼近“圓面積”,劉徽形容他的“割圓術(shù)”說:割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣.劉徽計算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個全等的正三角形,每個三角形的邊長均為圓的半徑R.此時圓內(nèi)接正六邊形的周長為6R,如果將圓內(nèi)接正六邊形的周長等同于圓的周長,可得圓周率為3.當(dāng)正十二邊形內(nèi)接于圓時,如果按照上述方法計算,可得圓周率為_____.(參考數(shù)據(jù):sinl5°=0.26)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+3a過點A(﹣1,0).
(1)求拋物線的對稱軸;
(2)直線y=x+4與y軸交于點B,與該拋物線對稱軸交于點C.如果該拋物線與線段BC有交點,結(jié)合函數(shù)的圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①所有銳角三角函數(shù)值都為正數(shù);②解直角三角形時只需已知除直角外的兩個元素;③Rt△ABC中,∠B=90°,則sin2A+cos2A=1;④Rt△ABC中,∠A=90°,則tanCsinC=cosC.其中正確的命題有( 。
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點經(jīng)過旗桿頂點恰好看到矮建筑物的墻角C點,且俯角α為60°,又從A點測得D點的俯角β為30°,若旗桿底點G為BC的中點,則矮建筑物的高CD為( )
A. 20米 B. 米 C. 米 D. 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC的邊AB上一點,CE∥AB,DE交AC于點F,若FA=FC.
(1)求證:四邊形ADCE是平行四邊形;
(2)若AE⊥EC,EF=EC=5,求四邊形ADCE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com