【題目】如圖,等腰Rt△ABC的直角邊BC在x軸上,斜邊AC上的中線BD交y軸于點E,雙曲線的圖象經(jīng)過點A,若△BEC的面積為4,則k的值為( 。
A. 8B. 8C. 16D. 16
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是CD的中點,將△BCE沿BE折疊后得到△BEF、且點F在矩形ABCD的內(nèi)部,將BF延長交AD于點G.若,則=__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于點A,B,與軸交于點C。過點C作CD∥x軸,交拋物線的對稱軸于點D,連結(jié)BD。已知點A坐標為(-1,0)。
(1)求該拋物線的解析式;
(2)求梯形COBD的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標是2.
(1)求拋物線的解析式及頂點坐標;
(2)在軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在同一平面內(nèi),將兩個全等的等腰直角和擺放在一起,為公共頂點,,它們的斜邊長為2,若固定不動,繞點旋轉(zhuǎn),、與邊的交點分別為、(點不與點重合,點不與點重合),設(shè),.
(1)請在圖中找出兩對相似而不全等的三角形,并選取其中一對加以證明.
(2)求與的函數(shù)關(guān)系式,直接寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點,連接OA,過A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點P.
(1)求反比例函數(shù)y=的表達式;
(2)求點B的坐標;
(3)求△OAP的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】全球最大的關(guān)公塑像矗立在荊州古城東門外.如圖,張三同學在東門城墻上C處測得塑像底部B處的俯角為18°48′,測得塑像頂部A處的仰角為45°,點D在觀測點C正下方城墻底的地面上,若CD=10米,則此塑像的高AB約為 米(參考數(shù)據(jù):tan78°12′≈4.8).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點 O 是△ABC 的邊 AB 上一點,以 OB 為半徑的⊙O 交 BC 于點 D,過點 D 的切線交 AC 于點 E,且 DE⊥AC.
(1)證明:AB=AC;
(2)設(shè) AB=cm,BC=2cm,當點 O 在 AB 上移動到使⊙O 與邊 AC 所在直線相切時, 求⊙O 的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示雙曲線y=與y=﹣分別位于第三象限和第二象限,A是y軸上任意一點,B是y=﹣上的點,C是y=上的點,線段BC⊥x軸于D,且4BD=3CD,則下列說法:①雙曲線y=在每個象限內(nèi),y隨x的增大而減;②若點B的橫坐標為﹣3,則C點的坐標為(﹣3,);③k=4;④△ABC的面積為定值7,正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com