【題目】如圖所示雙曲線y=與y=﹣分別位于第三象限和第二象限,A是y軸上任意一點,B是y=﹣上的點,C是y=上的點,線段BC⊥x軸于D,且4BD=3CD,則下列說法:①雙曲線y=在每個象限內(nèi),y隨x的增大而減;②若點B的橫坐標(biāo)為﹣3,則C點的坐標(biāo)為(﹣3,);③k=4;④△ABC的面積為定值7,正確的有( 。

A. 1個 B. 2個 C. 3個 D. 4個

【答案】B

【解析】

試題①∵雙曲線y=在第一象限,

∴k0

在每個象限內(nèi),yx的增大而減小,故正確;

②∵B的橫坐標(biāo)為3,

∴y=-=-1

∴BD=1,

∵4BD=3CD,

∴CD=,

C的坐標(biāo)為(3,),故錯誤;

③∵C的坐標(biāo)為(3,),

∴k=3×=4,故正確;

設(shè)B點橫坐標(biāo)為:x,則其縱坐標(biāo)為:-,故C點縱坐標(biāo)為:

BC=+=,

△ABC的面積為:,故此選項錯誤.

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtABC的直角邊BCx軸上,斜邊AC上的中線BDy軸于點E,雙曲線的圖象經(jīng)過點A,若BEC的面積為4,則k的值為(  )

A. 8B. 8C. 16D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形OABC中,OABCA、B兩點的坐標(biāo)分別為A13,0),B11,12).動點PQ分別從O、B兩點出發(fā),點P以每秒2個單位的速度沿x軸向終點A運動,點Q以每秒1個單位的速度沿BC方向運動;當(dāng)點P停止運動時,點Q也同時停止運動.線段PQOB相交于點D,過點DDEx軸,交AB于點E,射線QEx軸于點F.設(shè)動點PQ運動時間為t(單位:秒).

(1)當(dāng)t為何值時,四邊形PABQ是平行四邊形.

(2)PQF的面積是否發(fā)生變化?若變化,請求出PQF的面積s關(guān)于時間t的函數(shù)關(guān)系式;若不變,請求出PQF的面積.

(3)隨著PQ兩點的運動,PQF的形狀也隨之發(fā)生了變化,試問何時會出現(xiàn)等腰PQF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以O為原點的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且ODE的面積是12,則k=( 。

A. 6 B. 9 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB12cm,AMBN是它的兩條切線,DE切⊙OE,交AMD,BNC,設(shè)ADx,BCy,求yx的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰梯形ABCD放置在平面坐標(biāo)系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函數(shù)的圖象經(jīng)過點C.

(1)求點C的坐標(biāo)和反比例函數(shù)的解析式;

(2)將等腰梯形ABCD向上平移2個單位后,問點B是否落在雙曲線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ACBC5,AB8,ABx軸,垂足為A,反比例函數(shù)y(x0)的圖象經(jīng)過點C,交AB于點D

(1)OAAB,求k的值;

(2)BCBD,連接OC,求△OAC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂角為36°的等腰三角形,其底邊與腰之比等,這樣的三角形稱為黃金三角形,已知腰AB=1,△ABC為第一個黃金三角形,△BCD為第二個黃金三角形,△CDE為第三個黃金三角形,以此類推,第2014個黃金三角形的周長( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩塊全等的三角板如圖1擺放,其中∠A1CB1=∠ACB90°,∠A1=∠A30°

1)將圖1A1B1C繞點C順時針旋轉(zhuǎn)45°得圖2,點P1A1CAB的交點,點QA1B1BC的交點,求證:CP1CQ;

2)在圖2中,若AP1a,則CQ等于多少?

3)將圖2A1B1CC順時針旋轉(zhuǎn)到A2B2C(如圖3),點P2A2CAP1的交點.當(dāng)旋轉(zhuǎn)角為多少度時,有AP1C∽△CP1P2?這時線段CP1P1P2之間存在一個怎樣的數(shù)量關(guān)系?.

查看答案和解析>>

同步練習(xí)冊答案