【題目】如圖,在菱形ABCD中,AB=2 ,∠C=120°,以點C為圓心的 與AB,AD分別相切于點G,H,與BC,CD分別相交于點E,F(xiàn).若用扇形CEF作一個圓錐的側(cè)面,則這個圓錐的高是 .
【答案】2
【解析】解:如圖:連接CG,
∵∠C=120°,
∴∠B=60°,
∵AB與 相切,
∴CG⊥AB,
在直角△CBG中,CG=BCsin60°=2 × =3,即圓錐的母線長是3,
設(shè)圓錐底面的半徑為r,則:2πr= ,
∴r=1.
則圓錐的高是: =2 .
所以答案是:2 .
【考點精析】認真審題,首先需要了解菱形的性質(zhì)(菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半),還要掌握切線的性質(zhì)定理(切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】解下列方程:
(1)=3.
(2)(y+2)2=(3y﹣1)2.
(3)(x﹣2)(x+5)=8.
(4)(2x+1)2=﹣6x﹣3.
(5)2x2﹣3x﹣2=0.
(6)4x2﹣12x﹣1=0(配方法).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由甲、乙兩個工程隊承包某校校園的綠化工程,甲、乙兩隊單獨完成這項工作所需的時間比是3∶2,兩隊共同施工6天可以完成.
(1)求兩隊單獨完成此項工程各需多少天?
(2)此項工程由甲、乙兩隊共同施工6天完成任務(wù)后,學校付給他們4000元報酬,若按各自完成的工程量分配這筆錢,問甲、乙兩隊各應得到多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 矩形ABCD中,AB=8,BC=6,P為AD上一點, 將△ABP 沿BP翻折至△EBP, PE與CD相交于點O,BE與DC相交于G點,且OE=OD,
(1)求證:AP=DG
(2)若設(shè)AP=x,則GE=______,GC=_______(用含有x的代數(shù)式表示);并求AP的長度
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)發(fā)現(xiàn):如圖1,點A為線段BC外一動點,且BC=a,AB=b.當點A位于什么上時,線段AC的長取得最大值,且最大值為多少(用含a,b的式子表示)
(2)應用:點A為線段BC外一動點,且BC=4,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長的最大值.
(3)拓展:如圖3,在平面直角坐標系中,點A的坐標為(2,0),點B的坐標為(6,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,請直接寫出線段AM長的最大值及此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品經(jīng)銷店欲購進A、B兩種紀念品,用320元購進的A種紀念品與用400元購進的B種紀念品的數(shù)量相同,每件B種紀念品的進價比A種紀念品的進價貴10元.
(1)求A、B兩種紀念品每件的進價分別為多少?
(2)若該商店A種紀念品每件售價45元,B種紀念品每件售價60元,這兩種紀念品共購進200件,這兩種紀念品全部售出后總獲利不低于1600元,求A種紀念品最多購進多少件.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,銳角三角形ABC中,BC>AB>AC,甲、乙兩人想找一點P,使得∠BPC與∠A互補,其作法分別如下:
(甲)以A為圓心,AC長為半徑畫弧交AB于P點,則P即為所求;
(乙)作過B點且與AB垂直的直線,作過C點且與AC垂直的直線,交于P點,則P即為所求.
對于甲、乙兩人的作法,下列敘述何者正確?( )
A. 兩人皆正確
B. 兩人皆錯誤
C. 甲正確,乙錯誤
D. 甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一架方梯AB長25米,如圖所示,斜靠在一面上:
(1)若梯子底端離墻7米,這個梯子的頂端距地面有多高?
(2)在(1)的條件下,如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動了幾米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D是BC的中點,連接AD,E,F(xiàn)分別是AD和AD延長線上的點.且DE=DF,連接BF,CE,下列說法中:①△ABD和△ACD的面積相等;②∠BAD=∠CAD;③BF∥CE;④CE=BF,其中,正確的說法有__________(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com