【題目】如圖,銳角三角形ABC中,BC>AB>AC,甲、乙兩人想找一點P,使得∠BPC與∠A互補,其作法分別如下:

(甲)以A為圓心,AC長為半徑畫弧交ABP點,則P即為所求;

(乙)作過B點且與AB垂直的直線,作過C點且與AC垂直的直線,交于P點,則P即為所求.

對于甲、乙兩人的作法,下列敘述何者正確?(    )

A. 兩人皆正確

B. 兩人皆錯誤

C. 甲正確,乙錯誤

D. 甲錯誤,乙正確

【答案】D

【解析】

甲:根據(jù)作圖可得AC=AP,利用等邊對等角得:∠APC=ACP,由平角的定義可知:∠BPC+APC=180°,根據(jù)等量代換可作判斷;

乙:根據(jù)四邊形的內(nèi)角和可得:∠BPC+A=180°

甲:如圖1,

AC=AP,

∴∠APC=ACP,

∵∠BPC+APC=180°

∴∠BPC+ACP=180°,

∴甲錯誤;

乙:如圖2,

ABPB,ACPC,

∴∠ABP=ACP=90°,

∴∠BPC+A=180°,

∴乙正確,

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABE=ACD=RtAE=AD,ABC=ACB.求證:∠BAE=CAD

請補全證明過程,并在括號里寫上理由.

證明:在ABC中,

∵∠ABC=ACB

AB= ( )

RtABERtACD中,

=AC, =AD

RtABERtACD( )

∴∠BAE=CAD( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初中學生帶手機上學,給學生帶來了方便,同時也帶來了一些負面影響.針對這種現(xiàn)象,某校九年級數(shù)學興趣小組的同學隨機調(diào)查了若干名家長對“初中學生帶手機上學”現(xiàn)象的看法,統(tǒng)計整理并制作了如圖的統(tǒng)計圖:
(1)這次調(diào)查的家長總?cè)藬?shù)為人,表示“無所謂”的家長人數(shù)為人;
(2)隨機抽查一個接受調(diào)查的家長,恰好抽到“很贊同”的家長的概率是
(3)求扇形統(tǒng)計圖中表示“不贊同”的扇形的圓心角度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2 ,∠C=120°,以點C為圓心的 與AB,AD分別相切于點G,H,與BC,CD分別相交于點E,F(xiàn).若用扇形CEF作一個圓錐的側(cè)面,則這個圓錐的高是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校舉行“社會主義核心價值觀”知識比賽活動,全體學生都參加比賽,學校對參賽學生均給與表彰,并設(shè)置一、二、三等獎和紀念獎共四個獎項,賽后將獲獎情況繪制成如下所示的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給的信息,解答下列問題:
(1)該校共有名學生;
(2)在圖①中,“三等獎”所對應(yīng)扇形的圓心角度數(shù)是;
(3)將圖②補充完整;
(4)從該校參加本次比賽活動的學生中隨機抽查一名.求抽到獲得一等獎的學生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E是對角線AC上一點,且CE=CD,過點E作EF⊥AC交AD于點F,連接BE.
(1)求證:DF=AE;
(2)當AB=2時,求BE2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D AB的中點.

(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.

若點 Q 的運動速度與點 P 的運動速度相等,經(jīng)過 1 秒后,△BPD △CQP 是否全等,請說明理由;

若點 Q 的運動速度與點 P 的運動速度不相等,當點 Q 的運動速度為多少時,能夠使△BPD △CQP 全等?

(2)若點 Q 以②中的運動速度從點 C 出發(fā),點 P 以原來的運動速度從點 B 同時出發(fā),都逆時針沿△ABC 三邊運動,則經(jīng)過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3(a≠0)的頂點為E,該拋物線與x軸交于A、B兩點,與y軸交于點C,且BO=OC=3AO,直線y=﹣ x+1與y軸交于點D.

(1)求拋物線的解析式;
(2)證明:△DBO∽△EBC;
(3)在拋物線的對稱軸上是否存在點P,使△PBC是等腰三角形?若存在,請直接寫出符合條件的P點坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案