【題目】如圖,在△ABC中,AD、BE是中線,它們相交于點F,EGBC,交AD于點G

1)求證:△FGE∽△FDB;

2)求的值.

【答案】1)見解析;(2

【解析】

1)由GE∥BC,可得出∠GEF=∠DBF,再結(jié)合對頂角相等即可得出△FGE∽△FDB;

2)根據(jù)三角形中線定理以及中位線的定義得出GE=BDAG=DG,再利用相似三角形的性質(zhì)得出DF=DG,進(jìn)而即可得出=

解:(1)證明:∵GE∥BC,

∴∠GEF∠DBF

∵∠GFE∠DFB,

∴△FGE∽△FDB;

2)如圖:

∵AD、BE是中線,EG∥BC,

∴GE△ADC的中位線,BDDC,

∴GEDCBDAGDG

∵△FGE∽△FDB,

,

∴DFDG,

;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實數(shù)根.

(1)求k的取值范圍;

(2)若此方程的兩實數(shù)根x1,x2滿足x12+x22=11,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+4與坐標(biāo)軸分別交于點A、B,與直線yx交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當(dāng)點P、Q其中一點停止運動時,另一點也停止運動.分別過點P、Qx軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點PQ重合除外).

1)求點P運動的速度是多少?

2)當(dāng)t為多少秒時,矩形PEFQ為正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(-5,0),B(-3,0),點C在y軸的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°.點P從點Q(4,0)出發(fā),沿x軸向左以每秒1個單位長度的速度運動,運動時時間t秒.

(1)求點C的坐標(biāo);

(2)當(dāng)∠BCP=15°時,求t的值;

(3)以點P為圓心,PC為半徑的⊙P隨點P的運動而變化,當(dāng)⊙P與四邊形ABCD的邊(或邊所在的直線)相切時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的一邊AB為直徑作O,交于BC的中點D,過點D作直線EFO相切,交AC于點E,交AB的延長線于點F.若△ABC的面積為△CDE的面積的8倍,則下列結(jié)論中,錯誤的是( 。

A.AC2AOB.EF2AEC.AB2BFD.DF2DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,小華和媽媽到某景區(qū)游玩,小明想利用所學(xué)的數(shù)學(xué)知識,估測景區(qū)里的觀景塔的高度,他從點處的觀景塔出來走到點.沿著斜坡點走了米到達(dá)點,此時回望觀景塔,更顯氣勢宏偉.點觀察到觀景塔頂端的仰角為,再往前走到處,觀察到觀景塔頂端的仰角,測得之間的水平距離米,則觀景塔的高度約為( ) . ()

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D△ABC的邊AC上,要判斷△ADB△ABC相似,添加一個條件,不正確的是(

A.∠ABD=∠CB.∠ADB=∠ABCC.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2+bx+c與直線yx3交于,B兩點,其中點Ay軸上,點B坐標(biāo)為(﹣4,﹣5),點Py軸左側(cè)的拋物線上一動點,過點PPCx軸于點C,交AB于點D

1)求拋物線對應(yīng)的函數(shù)解析式;

2)以O,AP,D為頂點的平行四邊形是否存在若存在,求點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,.

1)點從點開始沿邊向的速度移動,點點開始沿邊向點的速度移動.如果點,分別從,同時出發(fā),經(jīng)過幾秒,的面積等于?

2)點從點開始沿邊向點的速度移動,點點開始沿邊向點的速度移動.如果點,分別從同時出發(fā),線段能否將分成面積相等的兩部分?若能,求出運動時間;若不能,請說明理由.

3)若點沿線段方向從點出發(fā)以的速度向點移動,點沿射線方向從點出發(fā)以的速度移動,,同時出發(fā),問幾秒后,的面積為?

查看答案和解析>>

同步練習(xí)冊答案