【題目】如圖,在中,,,.
(1)點從點開始沿邊向以的速度移動,點從點開始沿邊向點以的速度移動.如果點,分別從,同時出發(fā),經(jīng)過幾秒,的面積等于?
(2)點從點開始沿邊向點以的速度移動,點從點開始沿邊向點以的速度移動.如果點,分別從,同時出發(fā),線段能否將分成面積相等的兩部分?若能,求出運動時間;若不能,請說明理由.
(3)若點沿線段方向從點出發(fā)以的速度向點移動,點沿射線方向從點出發(fā)以的速度移動,,同時出發(fā),問幾秒后,的面積為?
【答案】(1)2秒或4秒 (2)答案見解析 (3)秒或5秒
【解析】
(1)根據(jù)直角三角形的面積公式和路程=速度×時間進行求解即可;
(2)設經(jīng)過秒,線段能否將分成面積相等的兩部分,根據(jù)面積之間的等量關系和判別式即可求解;
(3)分兩種情況:①當點在線段上,點在線段上時;
②當點在線段上,點在線段的延長線上時,進行討論即可求解.
解:(1)設經(jīng)過秒,的面積等于,依題意有
,
解得,,
經(jīng)檢驗,,均符合題意.
答:經(jīng)過2秒或4秒,的面積等于.
(2)設經(jīng)過秒,線段將分成面積相等的兩部分,依題意有
,
化簡可得.
∵.∴此方程無實數(shù)根.
∴線段不能將分成面積相等的兩部分.
(3)當點在線段上,點在線段上時,
設經(jīng)過秒,的面積為.
依題意有,
解得(舍去),,
∴;
當點在線段上,點在線段的延長線上時,
設經(jīng)過秒,的面積為.
依題意有,,
解得.
經(jīng)檢驗,符合題意.
綜上所述,經(jīng)過秒或5秒,的面積為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個拱形橋架可以近似看作是由等腰梯形ABD8D1和其上方的拋物線D1OD8組成.若建立如圖所示的直角坐標系,跨度AB=44米,∠A=45°,AC1=4米,點D2的坐標為(-13,-1.69),則橋架的拱高OH=________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.
(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于6cm2?
(2)在(1)中,△PQB的面積能否等于8cm2?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進一批單價為16元的日用品,銷售一段時間后,為了獲取更多利潤, 商店決定提高銷售價格,經(jīng)試驗發(fā)現(xiàn),若按每件20元的價格銷售時,每月能賣360件; 若按每件25元的價格銷售時,每月能賣210件.假定每月銷售件數(shù)y(件)是價格x( 元/件)的一次函數(shù).
(1)試求y與x之間的函數(shù)關系式;
(2)在商品不積壓,且不考慮其他因素的條件下,問銷售價格為多少時,才能使每月獲得最大利潤?每月的最大利潤是多少?(總利潤=總收入-總成本).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,對于點P(x,y)和Q(x,y′),給出如下定義:若y′=,則稱點Q為點P的“可控變點”.請問:若點P在函數(shù)y=﹣x2+16(﹣5≤x≤a)的圖象上,其“可控變點”Q的縱坐標y′的取值范圍是﹣16≤y′≤16,則實數(shù)a的值是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在⊙O中,AD平分圓周角∠BAC,AE⊥BC,∠BAC=60°,∠OAD=16°,求∠C的度數(shù)為( 。
A.50°B.30°C.44°D.45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ACD中,∠ACD=90°,AC=b,CD=a,AD=c,點B在CD的延長線上
(1)求證:關于x的一元二次方程必有實數(shù)根
(2)當b=3,CB=5時.將線段AD繞點D順時針旋轉(zhuǎn)90°,得到線段DE,連接BE,則當a的值為多少時,線段BE的長最短,最短長度是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①位似圖形都相似;②位似圖形都是平移后再放大(或縮小)得到;③直角三角形斜邊上的中線與斜邊的比為1:2;④兩個相似多邊形的面積比為4:9,則周長的比為16:81中,正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com