【題目】國內(nèi)豬肉價(jià)格不斷上漲,已知今年10月的豬肉價(jià)格比今年年初上漲了80%,李奶奶10月在某超市購買1千克豬肉花了72元錢.
(1)今年年初豬肉的價(jià)格為每千克多少元?
(2)某超市將進(jìn)貨價(jià)為每千克55元的豬肉按10月價(jià)格出售,平均一天能銷售出100千克,隨著國家對(duì)豬肉價(jià)格的調(diào)控,超市發(fā)現(xiàn)豬肉的售價(jià)每千克下降1元,其日銷售量就增加10千克,超市為了實(shí)現(xiàn)銷售豬肉每天有1800元的利潤,并且盡可能讓顧客得到實(shí)惠,豬肉的售價(jià)應(yīng)該下降多少元?
【答案】(1)每千克40元(2)豬肉的售價(jià)應(yīng)該下降5元
【解析】
(1)設(shè)今年年初豬肉的價(jià)格為每千克x元,根據(jù)今年10月的豬肉價(jià)格=今年年初豬肉的價(jià)格×(1+上漲率),即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;
(2)設(shè)豬肉的售價(jià)應(yīng)該下降y元,則每日可售出(100+10y)千克,根據(jù)總利潤=每千克的利潤×銷售數(shù)量,即可得出關(guān)于y的一元二次方程,解之取其較大值即可得出結(jié)論.
解:(1)設(shè)今年年初豬肉的價(jià)格為每千克元,
依題意,得,
解得.
答:今年年初豬肉的價(jià)格為每千克40元.
(2)設(shè)豬肉的售價(jià)應(yīng)該下降元,則每日可售出千克,
依題意,得,
整理,得,
解得.
∵讓顧客得到實(shí)惠,
∴.
答:豬肉的售價(jià)應(yīng)該下降5元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AM∥BN,C是BN上一點(diǎn), BD平分∠ABN且過AC的中點(diǎn)O,交AM于點(diǎn)D,DE⊥BD,交BN于點(diǎn)E.
(1)求證:△ADO≌△CBO.
(2)求證:四邊形ABCD是菱形.
(3)若DE = AB = 2,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一不透明的袋子中裝有四張標(biāo)有數(shù)字的卡片,這些卡片除數(shù)字外其余均相同.小明同學(xué)按照一定的規(guī)則抽出兩張卡片,并把卡片上的數(shù)字相加,下圖是他所畫的樹狀圖的一部分.
(1)由上圖分析,該游戲規(guī)則是:第一次從袋子中隨機(jī)抽出一張卡片后 (填“放回”或“不放回”),第二次隨機(jī)再抽出一張卡片;
(2)幫小明同學(xué)補(bǔ)全樹狀圖,并求小明同學(xué)兩次抽到卡片上的數(shù)字之和為偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①,圖②,圖③均為4×4的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),小正方形的邊長都為1.線段AB的端點(diǎn)均在格點(diǎn)上. 按要求在圖①,圖②,圖③中畫圖.
(1)在圖①中,以線段AB為斜邊畫一個(gè)等腰直角三角形,且直角的頂點(diǎn)為格點(diǎn);
(2)在圖②中,以線段AB為斜邊畫一個(gè)直角三角形,使其面積為2,且直角的頂點(diǎn)為格點(diǎn);
(3)在圖③中,畫一個(gè)四邊形,使所畫四邊形是中心對(duì)稱圖形,不是軸對(duì)稱圖形,且其余兩個(gè)頂點(diǎn)均為格點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,拋物線()與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)當(dāng)a=1時(shí),拋物線頂點(diǎn)D的坐標(biāo)為________,AB=_________;
(2)AB的長是否與a有關(guān)?說明你的理由;
(3)若將拋物線()沿y軸折疊,得到另一拋物線,其頂點(diǎn)為D,如圖②.連接CD,CD和DD.
①若△CDD為等邊三角形時(shí),則a=______;
②若△CDD為等腰直角三角形時(shí),則a=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=x+b與x軸、y軸分別交于A,B兩點(diǎn),與反比例函數(shù)y2=﹣(x<0)的圖象交于C,D兩點(diǎn),點(diǎn)C的橫坐標(biāo)為﹣1,過點(diǎn)C作CE⊥y軸于點(diǎn)E,過點(diǎn)D作DF⊥x軸于點(diǎn)F.下列說法正確的是( 。
A.b=5
B.BC=AD
C.五邊形CDFOE的面積為35
D.當(dāng)x<﹣2時(shí),y1>y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=kx+b與雙曲線y=(x>0)交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)E,已知點(diǎn)A(1,3),點(diǎn)C(4,0).
(1)求直線l1和雙曲線的解析式;
(2)將△OCE沿直線l1翻折,點(diǎn)O落在第一象限內(nèi)的點(diǎn)H處,求點(diǎn)H的坐標(biāo);
(3)如圖,過點(diǎn)E作直線l2:y=3x+4交x軸的負(fù)半軸于點(diǎn)F,在直線l2上是否存在點(diǎn)P,使得S△PBC=S△OBC?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)圖象的對(duì)稱軸為直線,且,頂點(diǎn)為.
(1)求的值;
(2)求點(diǎn)的坐標(biāo)(用含的式子表示);
(3)已知點(diǎn),,若函數(shù)的圖象與線段恰有一個(gè)公共點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°,AO=4,CO=2,接連接AD,BC、點(diǎn)H為BC中點(diǎn),連接OH.
(1)如圖1所示,求證:OH=AD且OH⊥AD;
(2)將△COD繞點(diǎn)O旋轉(zhuǎn)到圖2所示位置時(shí),線段OH與AD又有怎樣的關(guān)系,證明你的結(jié)論;
(3)請(qǐng)直接寫出線段OH的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com