【題目】問題背景
如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。
類比研究
如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(diǎn)(D,E,F(xiàn)三點(diǎn)不重合)。
(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進(jìn)行證明;
(2)△DEF是否為正三角形?請說明理由;
(3)進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè),,,請?zhí)剿?/span>,,滿足的等量關(guān)系。
【答案】(1)全等;證明見解析;(2)是,理由見解析;(3)c2=a2+ab+b2.
【解析】
試題分析:(1)由正三角形的性質(zhì)得∠CAB=∠ABC=∠BCA=60°,AB=BC,證出∠ABD=∠BCE,由ASA證明△ABD≌△BCE即可;、
(2)由全等三角形的性質(zhì)得出∠ADB=∠BEC=∠CFA,證出∠FDE=∠DEF=∠EFD,即可得出結(jié)論;
(3)作AG⊥BD于G,由正三角形的性質(zhì)得出∠ADG=60°,在RtΔADG中,DG=b,AG=b, 在RtΔABG中,由勾股定理即可得出結(jié)論.
試題解析: (1)△ABD≌△BCE≌△CAF;理由如下:
∵△ABC是正三角形,
∴∠CAB=∠ABC=∠BCA=60°,AB=BC,
∵∠ABD=∠ABC﹣∠2,∠BCE=∠ACB﹣∠3,∠2=∠3,
∴∠ABD=∠BCE,
在△ABD和△BCE中,
,
∴△ABD≌△BCE(ASA);
(2)△DEF是正三角形;理由如下:
∵△ABD≌△BCE≌△CAF,
∴∠ADB=∠BEC=∠CFA,
∴∠FDE=∠DEF=∠EFD,
∴△DEF是正三角形;
(3)作AG⊥BD于G,如圖所示:
∵△DEF是正三角形,
∴∠ADG=60°,
在Rt△ADG中,DG=b,AG=b,
在Rt△ABG中,c2=(a+b)2+(b)2,
∴c2=a2+ab+b2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文化用品商店出售書包和文具盒,書包每個(gè)定價(jià)40元,文具盒每個(gè)定價(jià)10元,該店制定了兩種優(yōu)惠方案:方案一,買一個(gè)書包贈(zèng)送一個(gè)文具盒;方案二:按總價(jià)的九折付款,購買時(shí),顧客只能選用其中的一種方案.某學(xué)校為給學(xué)生發(fā)獎(jiǎng)品,需購買5個(gè)書包,文具盒若干(不少于5個(gè)).設(shè)文具盒個(gè)數(shù)為x(個(gè)),付款金額為y(元).
(1)分別寫出兩種優(yōu)惠方案中y與x之間的關(guān)系式;
方案一:y1= ;方案二:y2= .
(2)若購買20個(gè)文具盒,通過計(jì)算比較以上兩種方案中哪種更省錢?
(3)學(xué)校計(jì)劃用540元錢購買這兩種獎(jiǎng)品,最多可以買到 個(gè)文具盒(直接回答即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AH是△ABC的高,D是邊AB上一點(diǎn),CD與AH交于點(diǎn)E.已知AB=AC=6,cosB=,
AD∶DB=1∶2.
(1)求△ABC的面積;
(2)求CE∶DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BCD=∠D=90°,E是邊AB的中點(diǎn).已知AD=1,AB=2.
(1)設(shè)BC=x,CD=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(2)當(dāng)∠B=70°時(shí),求∠AEC的度數(shù);
(3)當(dāng)△ACE為直角三角形時(shí),求邊BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算與化簡
(1)-18+21+(-13)
(2)-81÷×÷(-16)
(3)(+-)×(-24)
(4)-22-×[4-(-3)2]
(5)化簡:5(3x2y-xy2)-4(-xy2+2x2y)
(6)先化簡,再求值:-x+2(x-y2) - (-x+y2);其中x=2,y=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x﹣1的圖象經(jīng)過A(0,﹣1)、B(1,0)兩點(diǎn),與反比例函數(shù)y=的圖象在第一象限內(nèi)的交點(diǎn)為M,若△OBM的面積為1.
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)在x軸上是否存在點(diǎn)P,使AM⊥PM?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)x軸上是否存在點(diǎn)Q,使△QBM∽△OAM?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查市民上班時(shí)最常用的交通工具的情況,隨機(jī)抽取了四市部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“A:自行車,B:電動(dòng)車,C:公交車,D:家庭汽車,E:其他”五個(gè)選項(xiàng)中選擇最常用的一項(xiàng),將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請結(jié)合統(tǒng)計(jì)圖回答下列問題:
(1)在這次調(diào)查中,一共調(diào)查了 名市民.
(2)扇形統(tǒng)計(jì)圖中,C組對應(yīng)的扇形圓心角是 .
(3)請補(bǔ)全條形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新房裝修后,某居民購買家用品的清單如下表,因污水導(dǎo)致部分信息無法識(shí)別,根據(jù)下表解決問題:
家居用品名稱 | 單價(jià)(元) | 數(shù)量(個(gè)) | 金額(元) |
垃圾桶 | 15 | ||
鞋架 | 40 | ||
字畫 | a | 2 | 90 |
合計(jì) | 5 | 185 |
(1)居民購買垃圾桶,鞋架各幾個(gè)?
(2)若居民再次購買字畫和垃圾桶兩種家居用品共花費(fèi)150元,則有哪幾種不同的購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2k+3)x+k2+2k=0,有兩個(gè)不相等的實(shí)數(shù)根x1,x2.
(1)求k的取值范圍;
(2)若方程的兩實(shí)數(shù)根x1,x2滿足x1x2﹣x12﹣x22=﹣16,求實(shí)數(shù)k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com