【題目】探索與證明:

(1)如圖1,直線經(jīng)過正三角形的項(xiàng)點(diǎn),在直線上取兩點(diǎn),,使得,.通過觀察或測(cè)量,猜想線段之間滿足的數(shù)量關(guān)系,并子以證明:

(2)(1)中的直線繞著點(diǎn)逆時(shí)針方向旋轉(zhuǎn)一個(gè)角度到如圖2的位置,并使.通過觀察或測(cè)量,猜想線段,之間滿足的數(shù)量關(guān)系,并予以證明.

【答案】1)猜想:.證明見解析;(2)猜想:.證明見解析.

【解析】

1)應(yīng)用AAS證明DAB≌△ECA,則有AD=CE,BD=AE,問題可解

2AAS證明DABECA則有AD=CE,BD=AE,問題可解.

1)猜想:.

證明:由已知條件可知:,,

中,,,

.

,

.

(2)(1)中的直線繞著點(diǎn)逆時(shí)針方向旋轉(zhuǎn)一個(gè)角度到如圖2的位置,并使,.

2)猜想:.

證明:由已知條件可知:,

.

中,,

.

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)yx與一次函數(shù)y=﹣x+7的圖象交于點(diǎn)A,x軸上有一點(diǎn)P(a0)

1)求點(diǎn)A的坐標(biāo);

2)若OAP為等腰三角形,則a   

3)過點(diǎn)Px軸的垂線(垂線位于點(diǎn)A的右側(cè))、分別交yxy=﹣x+7的圖象于點(diǎn)B、C,連接OC.若BCOA,求OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018清明節(jié)前夕,宜賓某花店用1000元購進(jìn)若干菊花,很快售完,接著又用2500元購進(jìn)第二批

花,已知第二批所購花的數(shù)量是第一批所購花數(shù)的2倍,且每朵花的進(jìn)價(jià)比第一批的進(jìn)價(jià)多元.

(1)第一批花每束的進(jìn)價(jià)是多少元.

(2)若第一批菊花按3元的售價(jià)銷售,要使總利潤不低于1500不考慮其他因素,第二批每朵菊花的售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B、F、C、E在一條直線上,FB=CE,ABEDACFD;

(1)已知∠A=85°,ACE=115°,求∠B度數(shù);

(2)求證:AB=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A(0,3)與點(diǎn)B關(guān)于x軸對(duì)稱,點(diǎn)C(n,0)x軸的正半軸上一動(dòng)點(diǎn).以AC為邊作等腰直角三角形ACD,∠ACD=90°,點(diǎn)D在第一象限內(nèi).連接BD,交x軸于點(diǎn)F

(1)如果∠OAC=38°,求∠DCF的度數(shù);

(2)用含n的式子表示點(diǎn)D的坐標(biāo);

(3)在點(diǎn)C運(yùn)動(dòng)的過程中,判斷OF的長是否發(fā)生變化?若不變求出其值,若變化請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是18,腰AC的垂直平分線EF分別交AC,ABE,F點(diǎn),若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則CDM的周長的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A3,0),B0,﹣1),連接AB,過點(diǎn)B的垂線BC,使BCBA,則點(diǎn)C坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展“我最喜愛的一項(xiàng)體育活動(dòng)”調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.

請(qǐng)結(jié)合以上信息解答下列問題:

(1)m= ;

(2)請(qǐng)補(bǔ)全上面的條形統(tǒng)計(jì)圖;

(3)在圖2中,“乒乓球”所對(duì)應(yīng)扇形的圓心角的度數(shù)為

(4)已知該校共有1200名學(xué)生,請(qǐng)你估計(jì)該校約有 名學(xué)生最喜愛足球活動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù) y=﹣x+4 的圖象與反比例 y=k 為常數(shù), k≠0)的圖象交于 A(1,a)、Bb,1)兩點(diǎn).

(1)求點(diǎn) A、B 的坐標(biāo)及反比例函數(shù)的表達(dá)式;

(2) x 軸上找一點(diǎn),使 PA+PB 的值最小求滿足條件的點(diǎn) P 的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊(cè)答案