【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,D為AB上一點,連接CD,將CD繞點C 順時針旋轉(zhuǎn)90°至CE,連接AE.
(1)求證:△BCD≌△ACE;
(2)如圖2,連接ED,若CD=,AE=1,求AB的長;
(3)如圖3,若點F為AD的中點,分別連接EB和CF,求證:CF⊥EB.
【答案】(1)見解析;(2);(3)見解析
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì),利用SAS即可證明△BCD≌△ACE;
(2)由(1)可知AE=BD=1,證明∠EAD=90°,在Rt△ECD和Rt△EAD中,根據(jù)勾股定理,即可求得ED和AD,進而求得AB;
(3)過C作CG⊥AB于G,則AG=AB,再證明,,即可得出,且∠CGF=∠BAE=90°,證明出△CGF∽△BAE,得出∠FCG=∠ABE,即可證得∠ABE+∠CFG=90°,即CF⊥BE.
(1)由旋轉(zhuǎn)性質(zhì)可得EC=DC,∠ECD=90°=∠ACB,
∴∠BCD=∠ACE,
又∵AC=BC,
∴△BCD≌△ACE(SAS);
(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,
∴∠EAD=90°,
∴,,
∴,
故答案為:;
(3)如圖,過C作CG⊥AB于G,則AG=AB,
∵∠ACB=90°,AC=BC,
∴CG=AB,即,
∵點F為AD的中點,
∴FA=AD,
∴FG=AG﹣AF,
=AB﹣AD=(AB﹣AD)=BD,
由(1)可得:BD=AE,
∴FG=AE,即,
∴,
又∵∠CGF=∠BAE=90°,
∴△CGF∽△BAE,
∴∠FCG=∠ABE,
∵∠FCG+∠CFG=90°,
∴∠ABE+∠CFG=90°,
∴CF⊥BE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸l1與l2互相平行,A、B是l1上的兩點,C、D是l2上的兩點,某同學(xué)在A處測得∠CAB=90°,∠DAB=30°,再沿AB方向走20米到達點E(即AE=20),測得∠DEB=60°.求:C,D兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于兩點,,其中.下列四個結(jié)論:①;②;③;④,正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蘇州市某初中學(xué)校對本校初中學(xué)生完成家庭作業(yè)的時間做了總量控制,規(guī)定每天完成家庭作業(yè)時間不超過1.5小時.該校數(shù)學(xué)課外興趣小組對本校初中學(xué)生回家完成作業(yè)的時間做了一次隨機抽樣調(diào)查,并繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.
時間(小時) | 頻數(shù)(人數(shù)) | 頻率 |
0≤t<0.5 | 4 | 0.1 |
0.5≤t<1 | a | 0.3 |
1≤t<1.5 | 10 | 0.25 |
1.5≤t<2 | 8 | b |
2≤t<2.5 | 6 | 0.15 |
合計 | 1 |
(1)a= ,b= ;
(2)補全頻數(shù)分布直方圖;
(3)請估計該校1 500名初中學(xué)生中,約有多少學(xué)生在1.5小時以內(nèi)完成家庭作業(yè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一個函數(shù),如果它的自變量 x 與函數(shù)值 y 滿足:當(dāng)1≤x≤1 時,1≤y≤1,則稱這個函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經(jīng)過點 A(1,1)和點 B(1,1),則 a 的取值范圍是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解市民對“垃圾分類知識”的知曉程度,某數(shù)學(xué)學(xué)習(xí)興趣小組對市民進行隨機抽樣的問卷調(diào)查,調(diào)查結(jié)果分為“.非常了解”、“.了解”、“.基本了解”、“.不太了解”四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖(圖1,圖2),請根據(jù)圖中的信息解答下列問題.
(1)這次調(diào)查的市民人數(shù)為 人,圖2中, ;
(2)補全圖1中的條形統(tǒng)計圖;
(3)在圖2中的扇形統(tǒng)計圖中,求“.基本了解”所在扇形的圓心角度數(shù);
(4)據(jù)統(tǒng)計,2018年該市約有市民500萬人,那么根據(jù)抽樣調(diào)查的結(jié)果,可估計對“垃圾分類知識”的知曉程度為“.不太了解”的市民約有多少萬人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的頂點,B分別在y軸、x軸上,OA=2,OB=1,斜邊AC∥x軸.若反比例函數(shù)(k>0,x>0)的圖象經(jīng)過AC的中點D,則k的值為( )
A.8B.5C.6D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的一次函數(shù)和反比例函數(shù)的圖像都經(jīng)過點.
求:(1)一次函數(shù)和反比例函數(shù)的解析式;
(2)若一次函數(shù)和反比例函數(shù)圖像的另一個交點的坐標為,請結(jié)合圖像直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(滿分7分)五月石榴紅,枝頭鳥兒歌.一只小鳥從石榴樹上的A處沿直線飛到對面一房屋的頂部C處.從A處看房屋頂部C處的仰角為,看房屋底部D處的俯角為,石榴樹與該房屋之間的水平距離為米,求出小鳥飛行的距離AC和房屋的高度CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com