【題目】如圖,已知菱形OABC的邊OA在x軸上,點B的坐標為(8,4),P是對角線OB上的一個動點,點D(0,1)在y軸上,當PC+PD最短時,最短距離是_____

【答案】

【解析】

如圖連接AC,AD,分別交OBG、P,作BK⊥OAK.首先說明點P就是所求的點,根據(jù)勾股定理即可得到結(jié)論..

解:如圖連接AC,AD,分別交OB于G、P,作BK⊥OA于K.

在Rt△OBK中,OB= = =4,

∵四邊形OABC是菱形,

∴AC⊥OB,GC=AG,OG=BG=2 ,

設(shè)OA=AB=x,在Rt△ABK中,∵AB2=AK2+BK2,

∴x2=(8﹣x)2+42,

∴x=5,

∴A(5,0),

∴OA=5,

∵A、C關(guān)于直線OB對稱,

∴PC+PD=PA+PD=DA,

∴此時PC+PD最短,

∵AD=,

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC= .對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn),分別交BC,AD于點E,F(xiàn).

(1)證明:當旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形;

(2)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;

(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉(zhuǎn)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)上有一點,點橫坐標為1,過點的直線、軸分別交于點、點,.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)將直線沿軸方向向下平移使其過反比例函數(shù)的右支圖象上的點,且點橫坐標為,直線交軸于點,連接、,求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將每件進價為80元的A商品按每件100元出售,一天可售出128.經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品的銷售單價每降低1,其日銷量可增加8.設(shè)該商品每件降價x,商場一天可通過A商品獲利潤y.

(1)求yx之間的函數(shù)解析式(不必寫出自變量x的取值范圍)

(2)A商品銷售單價為多少時,該商場每天通過A商品所獲的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖市防汛指揮部決定對某水庫的水壩進行加高加固,設(shè)計師提供的方案是:水壩加高1(EF=1),背水坡AF的坡度i=11,已知AB=3,ABE=120°,求水壩原來的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是邊ABCD上的點,AE=CF,連接EF,BFEF與對角線AC交于O點,且BE=BF∠BEF=2∠BAC。

1)求證:OE=OF;

2)若BC=,求AB的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】知識是用來為人類服務(wù)的,我們應(yīng)該把它們用于有意義的方面.下面就兩個情景請你作出評判.

情景一:從教室到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪,這是為什么呢?試用所學(xué)數(shù)學(xué)知識來說明這個問題.

情景二:A、B是河流l兩旁的兩個村莊,現(xiàn)要在河邊修一個抽水站向兩村供水,問抽水站修在什么地方才能使所需的管道最短?請在圖中表示出抽水站點P的位置,并說明你的理由:

你贊同以上哪種做法?你認為應(yīng)用數(shù)學(xué)知識為人類服務(wù)時應(yīng)注意什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,OAOB,ABx軸于點C,點A,1)在反比例函數(shù)y的圖象上.

(1)求反比例函數(shù)y的表達式;

(2)在x軸上是否存在一點P,使得SAOPSAOB,若存在,求所有符合條件點P的坐標;若不存在,簡述你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點E為AB的中點.

(1)求證:△ADC∽△ACB.

(2)若AD=2,AB=3,求的值.

查看答案和解析>>

同步練習冊答案