【題目】平行四邊形中,,,,則平行四邊形的周長為____________.
【答案】58或38.
【解析】
分兩種情況分別畫出圖形:如圖1,作DH⊥AB,當點H在線段AB上時,根據(jù)設(shè)DH=4x,AH=3x,得到AD=5x,由求出x=3,利用勾股定理求出BH==5,即可求出平行四邊形ABCD的周長;如圖2,過點D作DH⊥AB,當點H在線段AB的延長線上時,根據(jù),設(shè)DH=4x,AH=3x,由AD=15求出DH=4x=12,AH=3x=9,利用勾股定理得到BH= =5,即可求出平行四邊形ABCD的周長.
如圖1,作DH⊥AB,當點H在線段AB上時,
∵,
∴設(shè)DH=4x,AH=3x,
∴AD=5x,
∵,
∴x=3,
∴DH=4x=12,AH=3x=9,
∵BD=13,
∴BH==5,
∴AB=9+5=14,
∴平行四邊形ABCD的周長為;
如圖2,過點D作DH⊥AB,當點H在線段AB的延長線上時,
∵,
∴設(shè)DH=4x,AH=3x,
∴AB=5x,
∵AD=15,
∴x=3,
∴DH=4x=12,AH=3x=9,
在Rt△BDH中,BH= =5,
∴AB=9-5=4,
∴平行四邊形ABCD的周長為,
故答案為:58或38.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為調(diào)查“停課不停學(xué)”期間九年級學(xué)生平均每天上網(wǎng)課時長,隨機抽取了名九年級學(xué)生做網(wǎng)絡(luò)問卷調(diào)查.共四個選項:小時以下)、小時)、小時), 小時以上),每人只能選一
項.并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.
被調(diào)查學(xué)生平均每天上網(wǎng)課時間統(tǒng)計表
時長 | 所占百分比 |
合計 |
根據(jù)以上信息,解答下列問題:
, ,
補全條形統(tǒng)計圖;
該校有九年級學(xué)生名,請你估計仝校九年級學(xué)生平均每天上網(wǎng)課時長在小時及以上的共多少名;
在被調(diào)查的對象中,平均每天觀看時長超過小時的,有名來自九班,名來自九班,其余都來自九班,現(xiàn)教導(dǎo)處準備從選項中任選兩名學(xué)生進行電話訪談,請用列表法或畫樹狀圖的方法求所抽取的名學(xué)生恰好來自同一個班級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強學(xué)生的身體素質(zhì),教育行政部門規(guī)定學(xué)生每天參加戶外活動的平均時間不少于1小時.為了解學(xué)生參加戶外活動的情況,對部分學(xué)生參加戶外活動的時間進行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中共調(diào)查了多少名學(xué)生?
(2)求戶外活動時間為1.5小時的人數(shù),并補全頻數(shù)分布直方圖;
(3)本次調(diào)查中學(xué)生參加戶外活動的平均時間是否符合要求?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=16,AD=12,點E、F分別在邊CD、AB上.
(1)若DE=BF,求證:四邊形AFCE是平行四邊形;
(2)若四邊形AFCE是菱形,求菱形AFCE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了豐富學(xué)生的課余生活,計劃購買排球和籃球供球類興趣小組活動使用,若購買4個籃球和3個排球需用94元;若購買16個籃球和5個排球需用306元;
(1)求一個籃球和一個排球各多少元;
(2)該中學(xué)決定購買排球和籃球共40個,總費用不超過550元,那么該中學(xué)至少可以購買多少個排球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,在等腰直角三角形中,底邊與一邊腰長比為.如圖1,,,則.
知識應(yīng)用:
(1)如圖2,和均為等腰直角三角形,,,,三點共線,若,,求的長.
知識外延:
(2)如圖3,正方形中,和關(guān)于對稱,點的對應(yīng)點為點,交的延長線于點,連接.
①求證:;
②若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,拋物線與軸交于B、C兩點(點B在點C右側(cè)),與軸交于點,連接,.
(1)求拋物線的解析式;
(2)點P在第二象限的拋物線上,連接PB交軸于D,取PB的中點E,過點E作軸于點H,連接DH,設(shè)點P的橫坐標為.的面積為,求與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(3)在(2)的條件下,作軸于F,連接CP、CD,,點為上一點,連接交軸于點,連接BF并延長交拋物線于點.,在射線CS上取點Q.連接QF,,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=6,AE⊥BD,垂足為E,DE=3BE,點P,Q分別在BD,AD 上,則AP+PQ的最小值為:
A. 2 B. C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明中學(xué)為了解九年級女同學(xué)的體育考試準備情況,隨機抽取部分女同學(xué)進行了800米跑測試.按照成績分為優(yōu)秀、良好、合格與不合格四個等級.學(xué)校繪制了如下不完整的統(tǒng)計圖.
(1)根據(jù)給出的信息,補全兩幅統(tǒng)計圖;
(2)該校九年級有400名女生,請估計成績未達到良好有多少名?
(3)某班甲、乙兩位成績優(yōu)秀的同學(xué)被選中參加即將舉行的學(xué)校運動會800米比賽.預(yù)賽分別為A、B、C三組進行,選手由抽簽確定分組.請用列表或樹狀圖求甲、乙兩人恰好分在同一組的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com