【題目】若矩形的一個內(nèi)角的平分線把矩形的一條邊分成3cm和5cm的兩段,則該矩形的周長為

【答案】22cm或26cm
【解析】解:

∵四邊形ABCD是矩形,

∴AD=BC,AB=CD,AD∥BC,

∴∠AEB=∠CBE,

∵BE平分∠ABC,

∴∠ABE=∠CBE,

∴∠AEB=∠ABE,

∴AB=AE,

當(dāng)AE=3cm時,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,

∴此時矩形ABCD的周長是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;

當(dāng)AE=5cm時,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,

∴此時矩形ABCD的周長是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;

所以答案是:22cm或26cm.

【考點精析】本題主要考查了矩形的性質(zhì)的相關(guān)知識點,需要掌握矩形的四個角都是直角,矩形的對角線相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】慶祝新中國成立70周年,國慶假期期間,各旅游景區(qū)節(jié)慶氛圍濃厚,某景區(qū)同步設(shè)置的“我為祖國點費”裝置共收集約639000個“贊”,這個數(shù)字用科學(xué)記數(shù)法可表示為( 。

A.6.39×106B.0.639×106C.0.639×105D.6.39×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用科學(xué)記數(shù)法表示0.000 010 2=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,連接BD.

(1)如圖1,AE⊥BD于E.直接寫出∠BAE的度數(shù).

(2)如圖1,在(1)的條件下,將△AEB以A旋轉(zhuǎn)中心,沿逆時針方向旋轉(zhuǎn)30°后得到△AB′E′,AB′與BD交于M,AE′的延長線與BD交于N.

①依題意補全圖1;

②用等式表示線段BM、DN和MN之間的數(shù)量關(guān)系,并證明.

(3)如圖2,E、F是邊BC、CD上的點,△CEF周長是正方形ABCD周長的一半,AE、AF分別與BD交于M、N,寫出判斷線段BM、DN、MN之間數(shù)量關(guān)系的思路.(不必寫出完整推理過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列算式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…通過觀察,用你發(fā)現(xiàn)的規(guī)律,寫出72004的末位數(shù)字是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科學(xué)實驗證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和反射出的光線與平面鏡所夾的角相等.

(1)如圖,一束光線m射到平面鏡a上,被a反射到平面鏡b上,又被b鏡反射出去,若b鏡反射出的光線n平行于m,且∠1=30,則∠2= ,∠3=

(2)在(1)中,若∠1=70,則∠3= ;若∠1=a,則∠3= ;

(3)由(1)(2)請你猜想:當(dāng)∠3= 時,任何射到平面鏡a上的光線m經(jīng)過平面鏡a和b的兩次反射后,入射光線m與反射光線n總是平行的?請說明理由.

(提示:三角形的內(nèi)角和等于180

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三邊長為a、b、c,滿足a+b=10,ab=18,c=8,則此三角形為_____三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下是兩張不同類型火車的車票(表示動車,表示高鐵):

1根據(jù)車票中的信息填空:該列動車和高鐵是__________向而行(填).

2已知該列動車和高鐵的平均速度分別為、,兩列火車的長度不計.

①經(jīng)過測算,如果兩列火車直達(dá)終點(即中途都不?咳魏握军c),高鐵比動車將早到,求、兩地之間的距離.

②在①中測算的數(shù)據(jù)基礎(chǔ)上,已知、兩地途中依次設(shè)有個站點、、,且,動車每個站點都?浚哞F只?、兩個站點,兩列火車在每個?空军c都停留.求該列高鐵追上動車的時刻.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某采摘農(nóng)場計劃種植A,B兩種草莓共6畝,根據(jù)表格信息,解答下列問題:

(1)若該農(nóng)場每年草莓全部被采摘的總收入為460000元,那么A、B兩種草莓各種多少畝?

(2)若要求種植A種草莓的畝數(shù)不少于種植B種草莓的一半,那么種植A種草莓多少畝時,可使該農(nóng)場每年草莓全部被采摘的總收入最多?并求出最多總收入.

查看答案和解析>>

同步練習(xí)冊答案