如圖(8-1),在正方形鐵皮上剪下一個扇形和一個半徑為1cm的圓形,使之恰好圍成圖(8-2)所示的一個圓錐,則這個圓錐的高為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
問題背景:若矩形的周長為1,則可求出該矩形面積的最大值.我們可以設(shè)矩形的一邊長為,面積為,則與的函數(shù)關(guān)系式為: (當(dāng)>0),利用函數(shù)的圖像或通過配方均可求得該函數(shù)的最大值.
提出新問題:若矩形的面積為1,則該矩形的周長有無最大值或最小值?若有,最大(。┲凳嵌嗌?
分析問題:若設(shè)該矩形的一邊長為(>0),周長為,則與的函數(shù)關(guān)系式為:,問題就轉(zhuǎn)化為研究該函數(shù)的最大(。┲盗.
解決問題:借鑒我們已有研究函數(shù)的經(jīng)驗(yàn),探索函數(shù)(當(dāng)>0)的最大(。┲.
(1)實(shí)踐操作:填寫下表,并用描點(diǎn)法畫出函數(shù)(當(dāng)>0)的圖像:
(2)觀察猜想:觀察該函數(shù)的圖像,猜想當(dāng)
= 時,函數(shù)(當(dāng)>0)
有最 值(填“大”或“小”),是 .
(3)推理論證:問題背景中提到,通過配方可求二次函數(shù) (當(dāng)>0)的最大值,請你嘗試通過配方求函數(shù)(當(dāng)>0)的最大(。┲,以證明你的猜想. 〔提示:當(dāng)>0時,〕
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在一次演講比賽中,某班派出的5名同學(xué)參加年級競賽的成績?nèi)缦卤恚▎挝唬悍郑,其中隱去了3號同學(xué)的成績,但得知5名同學(xué)的平均成績是21分,那么5名同學(xué)成績的方差是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
為參加陽光體育運(yùn)動,有9位同學(xué)去購買運(yùn)動鞋,他們的鞋號由小到大是: 20, 21, 21, 22, 22, 22, 22, 23, 23.這組數(shù)據(jù)的中位數(shù)和眾數(shù)是( )
A.21和22 B.21和23 C.22和22 D.22和23
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,M為雙曲線上的一點(diǎn),過點(diǎn)M作x軸、y軸的垂線,分別交直線于點(diǎn)D、C兩點(diǎn),若直線與y軸交于點(diǎn)A,與x軸相交于點(diǎn)B,則AD•BC的值為( 。
A. B. C. D.
\
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖(11),在一筆直的海岸線l上有A,B兩個觀測站,A在B的正東方向,AB=2(單位:km).有一艘小船在點(diǎn)P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.求點(diǎn)P到海岸線l的距離;(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:拋物線C1:。如圖(1),平移拋物線C1得到拋物線C2,C2經(jīng)過C1的頂點(diǎn)O和A(2,0),C2的對稱軸分別交C1、C2于點(diǎn)B、D。
(1)求拋物線C2的解析式;
(2)探究四邊形ODAB的形狀并證明你的結(jié)論;
(3)如圖(2),將拋物線C2向m個單位下平移(m>0)得拋物線C3,C3的頂點(diǎn)為G,與y軸交于M。點(diǎn)N是M關(guān)于x軸的對稱點(diǎn),點(diǎn)P()在直線MG上。問:當(dāng)m為何值時,在拋物線C3上存在點(diǎn)Q,使得以M、N、P、Q為頂點(diǎn)的四邊形為平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
新華社3月5日報道,我國去年國防開支比前年提高12%,達(dá)到約8082億元人民幣,將8082億用科學(xué)計數(shù)法表示應(yīng)為( )
A. 80.82×1010 B. 8.082×103 C. 8.082×1011 D. 0.8082×1012
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com