【題目】鮮豐水果店計(jì)劃用元/盒的進(jìn)價(jià)購(gòu)進(jìn)一款水果禮盒以備銷(xiāo)售.
據(jù)調(diào)查,當(dāng)該種水果禮盒的售價(jià)為元/盒時(shí),月銷(xiāo)量為盒,每盒售價(jià)每增長(zhǎng)元,月銷(xiāo)量就相應(yīng)減少盒,若使水果禮盒的月銷(xiāo)量不低于盒,每盒售價(jià)應(yīng)不高 于多少元?
在實(shí)際銷(xiāo)售時(shí),由于天氣和運(yùn)輸?shù)脑,每盒水果禮盒的進(jìn)價(jià)提高了,而每盒 水果禮盒的售價(jià)比中最高售價(jià)減少了,月銷(xiāo)量比中最低月銷(xiāo)量盒增加了,結(jié)果該月水果店銷(xiāo)售該水果禮盒的利潤(rùn)達(dá)到了元,求的值.
【答案】(1)若使水果禮盒的月銷(xiāo)量不低于盒,每盒售價(jià)應(yīng)不高于元;(2)的值為.
【解析】
(1)設(shè)每盒售價(jià)應(yīng)為x元,根據(jù)月銷(xiāo)量=98030×超出14元的部分結(jié)合月銷(xiāo)量不低于800盒,即可得出關(guān)于x的一元一次不等式,解之取其最大值即可得出結(jié)論;
(2)根據(jù)總利潤(rùn)=每盒利潤(rùn)×銷(xiāo)售數(shù)量,即可得出關(guān)于m的一元二次方程,解之取其正值即可得出結(jié)論.
解:設(shè)每盒售價(jià) 元.
依題意得:
解得:
答:若使水果禮盒的月銷(xiāo)量不低于盒,每盒售價(jià)應(yīng)不高于元
依題意:
令:
化簡(jiǎn):
解得:(舍去),
答:的值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的頂點(diǎn)D、G分別在AC、BC上,邊EF在AB上.
(1)求證:△AED∽△DCG;
(2)若矩形DEFG的面積為4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:等腰三角形具有性質(zhì)“等邊對(duì)等角”.事實(shí)上,不等邊三角形也具有類(lèi)似性質(zhì)“大邊對(duì)大角”:如圖1.在△ABC中,如果AB>AC,那么∠ACB>∠ABC.證明如下:將AB沿△ABC的角平分線AD翻折(如圖2),因?yàn)?/span>AB>AC,所以點(diǎn)B落在AC的延長(zhǎng)線上的點(diǎn)B'處.于是,由∠ACB>∠B',∠ABC=∠B',可得∠ACB>∠ABC.
(1)靈活運(yùn)用:從上面的證法可以看出,折紙常常能為證明一個(gè)命題提供思路和方法.由此小明想到可用類(lèi)似方法證明“大角對(duì)大邊”:如圖3.在△ABC中,如果∠ACB>∠ABC,那么AB>AC.小明的思路是:沿BC的垂直平分線翻折……請(qǐng)你幫助小明完成后面的證明過(guò)程.
(2)拓展延伸:請(qǐng)運(yùn)用上述方法或結(jié)論解決如下問(wèn)題:
如圖4,已知M為正方形ABCD的邊CD上一點(diǎn)(不含端點(diǎn)),連接AM并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)N.求證:AM+AN>2BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格圖中有格點(diǎn)△ABC(注:頂點(diǎn)在網(wǎng)格線交點(diǎn)處的三角形叫做格點(diǎn)三角形).只用沒(méi)有刻度的直尺,按如下要求畫(huà)圖,
(1)以點(diǎn)C為位似中心,在如圖中作△DEC∽ABC,且相似比為1:2;
(2)若點(diǎn)B為原點(diǎn),點(diǎn)C(4,0),請(qǐng)?jiān)?/span>如圖中畫(huà)出平面直角坐標(biāo)系,作出△ABC的外心,并直接寫(xiě)出△ABC的外心的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為分別位于軸,軸上,點(diǎn)在上,交于點(diǎn),函數(shù)的圖像經(jīng)過(guò)點(diǎn),若,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】調(diào)查作業(yè):了解你所住小區(qū)家庭3月份用氣量情況.
小天、小東和小蕓三位同學(xué)住在同一小區(qū),該小區(qū)共有300戶家庭,每戶家庭人數(shù)在2—5之間,這300戶家庭的平均人數(shù)約為3.3.
小天、小東和小蕓各自對(duì)該小區(qū)家庭3月份用氣量情況進(jìn)行了抽樣調(diào)查,將收集的數(shù)據(jù)進(jìn)行了整理,繪制的統(tǒng)計(jì)表分別為表1、表2、表3,
表1抽樣調(diào)查小區(qū)4戶家庭3月份用氣量統(tǒng)計(jì)表(單位:)
家庭人數(shù) | 2 | 3 | 4 | 5 |
用氣量 | 14 | 19 | 21 | 26 |
表2抽樣調(diào)查小區(qū)15戶家庭3月份用氣量統(tǒng)計(jì)表(單位:)
家庭人數(shù) | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 |
用氣量 | 10 | 11 | 15 | 13 | 14 | 15 | 17 | 17 | 18 | 18 | 18 | 18 | 18 | 20 | 22 |
表3抽樣調(diào)查小區(qū)15戶家庭3月份用氣量統(tǒng)計(jì)表(單位:)
家庭人數(shù) | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 |
用氣量 | 10 | 12 | 13 | 14 | 17 | 17 | 18 | 20 | 20 | 21 | 22 | 26 | 31 | 28 | 31 |
根據(jù)以上材料回答問(wèn)題:
(1)小天、小東和小蕓三人中,哪一位同學(xué)抽樣調(diào)查的數(shù)據(jù)能較好地反應(yīng)出該小區(qū)家庭3月份用氣量情況?請(qǐng)簡(jiǎn)要說(shuō)明其他兩位同學(xué)抽樣調(diào)查的不足之處;
(2)小東將表2中的數(shù)據(jù)按用氣量大小分為三類(lèi);
①節(jié)約型:;
②居中型:;
③偏高型:;并繪制成如下扇形統(tǒng)計(jì)圖,請(qǐng)幫助他將扇形圖補(bǔ)充完整;
(3)小蕓算出表3中3月份平均每人的用量為,請(qǐng)估計(jì)該小區(qū)3月份的總用氣量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù) y kx 與 y 的圖象交于 A、B 兩點(diǎn),過(guò) A 作 y 軸的垂線,交函數(shù)的圖象于點(diǎn) C,連接 BC,則△ABC 的面積為( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】記某商品銷(xiāo)售單價(jià)為x元,商家銷(xiāo)售此種商品每月獲得的銷(xiāo)售利潤(rùn)為y元,且y是關(guān)于x的二次函數(shù).已知當(dāng)商家將此種商品銷(xiāo)售單價(jià)分別定為55元或75元時(shí),他每月均可獲得銷(xiāo)售利潤(rùn)1800元;當(dāng)商家將此種商品銷(xiāo)售單價(jià)定為80元時(shí),他每月可獲得銷(xiāo)售利潤(rùn)1550元,則y與x的函數(shù)關(guān)系式是( )
A.y=﹣(x﹣60)2+1825B.y=﹣2(x﹣60)2+1850
C.y=﹣(x﹣65)2+1900D.y=﹣2(x﹣65)2+2000
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy,對(duì)于點(diǎn)P(xp,yp)和圖形G,設(shè)Q(xQ,yQ)是圖形G上任意一點(diǎn),|xp﹣xQ|的最小值叫點(diǎn)P和圖形G的“水平距離”,|yp﹣yQ|的最小值叫點(diǎn)P和圖形G的“豎直距離”,點(diǎn)P和圖形G的“水平距離”與“豎直距離”的最大值叫做點(diǎn)P和圖形G的“絕對(duì)距離”
例如:點(diǎn)P(﹣2,3)和半徑為1的⊙O,因?yàn)?/span>⊙O上任一點(diǎn)Q(xQ,yQ)滿足﹣1≤xQ≤1,﹣1≤yQ≤1,點(diǎn)P和⊙O的“水平距離”為|﹣2﹣xQ|的最小值,即|﹣2﹣(﹣1)|=1,點(diǎn)P和⊙O的“豎直距離”為|3﹣yQ|的最小值即|3﹣1|=2,因?yàn)?/span>2>1,所以點(diǎn)P和⊙O的“絕對(duì)距離”為2.
已知⊙O半徑為1,A(2,),B(4,1),C(4,3)
(1)①直接寫(xiě)出點(diǎn)A和⊙O的“絕對(duì)距離”
②已知D是△ABC邊上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)D與⊙O的“絕對(duì)距離”為2時(shí),寫(xiě)出一個(gè)滿足條件的點(diǎn)D的坐標(biāo);
(2)已知E是△ABC邊一個(gè)動(dòng)點(diǎn),直接寫(xiě)出點(diǎn)E與⊙O的“絕對(duì)距離”的最小值及相應(yīng)的點(diǎn)E的坐標(biāo)
(3)已知P是⊙O上一個(gè)動(dòng)點(diǎn),△ABC沿直線AB平移過(guò)程中,直接寫(xiě)出點(diǎn)P與△ABC的“絕對(duì)距離”的最小值及相應(yīng)的點(diǎn)P和點(diǎn)C的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com