【題目】某公司需招聘一名員工,對應(yīng)聘者甲、乙、丙、丁從筆試、面試兩個方面進(jìn)行量化考核.甲、乙、丙、丁兩項得分如下表:(單位:分)
甲 | 乙 | 丙 | 丁 | |
筆試 | 86 | 92 | 80 | 90 |
面試 | 90 | 88 | 94 | 84 |
(1)這4名選手筆試成績的中位數(shù)是 分,面試的平均數(shù)是 分.
(2)該公司規(guī)定:筆試、面試分別按40%,60%的比例計入總分,且各項成績都不得低于85分. 根據(jù)規(guī)定,請你說明誰將被錄用.
【答案】(1)88;89;(2)乙被錄用.
【解析】
(1)根據(jù)求中位數(shù)的方法:首先將數(shù)據(jù)進(jìn)行排序,因為數(shù)據(jù)的個數(shù)是偶數(shù)個,所以中位數(shù)就是最中間的兩個數(shù)的平均數(shù);平均數(shù)的求法:把這組數(shù)據(jù)的每個數(shù)相加之和在除以數(shù)據(jù)的個數(shù).
(2)根據(jù)題意可知,先選取各項成績都不得低于85分的人,再算出每個人的最終成績 筆試成績面試成績 ,按分?jǐn)?shù)最好者錄取.
(1) 將4名員工的筆試成績按升序排序: ,
這組數(shù)據(jù)的個數(shù)是偶數(shù)個;
中位數(shù) ;
面試的成績?yōu)椋?/span>
面試的平均數(shù)
(2) 解:由題意各項成績都不得低于85分的人
∴丙、丁不符合錄取要求.
∴
∴乙被錄用.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B是反比例函數(shù)圖象上的兩點,過點A作AC⊥y軸,垂足為C,交OB于點D,且D為OB的中點,若△ABO的面積為4,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小紅為了更直觀了解“物體質(zhì)量”的概念,各選五個雞蛋稱重,以每個為標(biāo)準(zhǔn),大于或等于即為達(dá)標(biāo),超過標(biāo)準(zhǔn)部分的克數(shù)記為正數(shù),不足標(biāo)準(zhǔn)部分的克數(shù)記為負(fù)數(shù).小明所統(tǒng)計的數(shù)據(jù)為實際稱重讀數(shù),小紅為記錄數(shù)據(jù),把所得數(shù)據(jù)整理成如下統(tǒng)計表(單位:).
序號 數(shù)據(jù) 姓名 | 1 | 2 | 3 | 4 | 5 |
小明 | 48 | 50 | 49 | 51 | |
小紅 | 2 | 1 |
經(jīng)過統(tǒng)計發(fā)現(xiàn),小明所選雞蛋質(zhì)量的平均數(shù)為,小紅所選雞蛋質(zhì)量的眾數(shù)為,根據(jù)以上信息:
(1)填空: , ;
(2)通過計算說明,小明和小紅哪個選取的雞蛋大小更均勻,請說明理由;
(3)現(xiàn)從小明和小紅所選取的雞蛋里各隨機挑一個,這兩個雞蛋質(zhì)量都達(dá)標(biāo)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時間x(單位:h)變化的圖象如圖所示,根據(jù)圖象信息,下列說法:①兩人相遇前,甲速度一直小于乙速度;②出發(fā)后1小時,兩人行程均為10km;③出發(fā)后1.5小時,甲的行程比乙多3km;④甲比乙先到達(dá)終點.其中正確的說法是_________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】建立模型:如圖1,已知△ABC,AC=BC,∠C=90°,頂點C在直線l上.
實踐操作:過點A作AD⊥l于點D,過點B作BE⊥l于點E,求證:△CAD≌△BCE.
模型應(yīng)用:(1)如圖2,在直角坐標(biāo)系中,直線l1:y=x+4與y軸交于點A,與x軸交于點B,將直線l1繞著點A順時針旋轉(zhuǎn)45°得到l2.求l2的函數(shù)表達(dá)式.
(2)如圖3,在直角坐標(biāo)系中,點B(8,6),作BA⊥y軸于點A,作BC⊥x軸于點C,P是線段BC上的一個動點,點Q(a,2a﹣6)位于第一象限內(nèi).問點A、P、Q能否構(gòu)成以點Q為直角頂點的等腰直角三角形,若能,請求出此時a的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的個數(shù)有( )
①若 x2+kx+25 是一個完全平方式,則 k 的值等于 10;
②一組對邊平行,一組對角相等的四邊形是平行四邊形;
③順次連接平行四邊形的各邊中點,構(gòu)成的四邊形是菱形;
④黃金分割比的值為≈0.618.
A. 0 個 B. 1 個 C. 2 個 D. 3 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(﹣1,0)(3,0)兩點,給出的下列6個結(jié)論:
①ab<0;
②方程ax2+bx+c=0的根為x1=﹣1,x2=3;
③4a+2b+c<0;
④當(dāng)x>1時,y隨x值的增大而增大;
⑤當(dāng)y>0時,﹣1<x<3;
⑥3a+2c<0.
其中不正確的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC=6,BD=6,E是BC邊的中點,P,M分別是AC,AB上的動點,連接PE,PM,則PE+PM的最小值是( 。
A. 6 B. 3 C. 2 D. 4.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一時鐘,時針OA長為6cm,分針OB長為8cm,△OAB隨著時間的變化不停地改變形狀.求:
(1)如圖①,13點時,△OAB的面積是多少?
(2)如圖②,14點時,△OAB的面積比13點時增大了還是減少了?為什么?
(3)問多少整點時,△OAB的面積最大?最大面積是多少?請說明理由.
(4)設(shè)∠BOA=α(0°≤α≤180°),試歸納α變化時△OAB的面積有何變化規(guī)律(不證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com