【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O與BC相交于點D,過點D作⊙O的切線與AB相交于點E.
(1)求證:DE⊥AB;
(2)若BE=2,BC=6,求⊙O的直徑.
【答案】(1)證明見解析;(2)⊙O的直徑為.
【解析】
(1)連接AD,OD,得出AD⊥BC,再根據(jù)AB=AC得出BD=CD,得出OD是三角形ABC的中位線,從而得出OD∥AB,從而得證;
(2)根據(jù)BE=2,BC=6得出,易證△AED∽△ADC,AEa,AD=3a,解直角三角形AED得出a的值,從而求算AB,算出直徑.
(1)連接AD,OD.
∵AC是⊙O的直徑,
∴AD⊥BC.
∵AB=AC,
∴BD=CD.
∵AO=CO,
∴OD∥AB,
∴DE⊥AB;
(2)∵DE⊥AB,
∴∠BED=∠AED=90°.
∵BE=2,BC=6,
∴BD=CD=3,
∴DE,
∵∠AED=∠ADC=90°,∠BAD=∠CAD,
∴△AED∽△ADC,
∴,
設(shè)AEa,AD=3a.
∵AE2+DE2=AD2,
∴5a2+5=9a2,
∴a(負(fù)值舍去),
∴AE,
∴AB=AE+BE,
∴⊙O的直徑為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在等腰三角形ABC中,AB=AC=8,BC=14.如圖②,在底邊BC上取一點D,連結(jié)AD,使得∠DAC=∠ACD.如圖③,將△ACD沿著AD所在直線折疊,使得點C落在點E處,連結(jié)BE,得到四邊形ABED.則BE的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過點(1,2),(5,3),則下列說法正確的是( 。
①拋物線與y軸有交點
②若拋物線經(jīng)過點(2,2),則拋物線的開口向上
③拋物線的對稱軸不可能是x=3
④若拋物線的對稱軸是x=4,則拋物線與x軸有交點
A.①②③④B.①②③C.①③④D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=60°,AD平分∠BAC交邊BC于點D,分別過D作DE∥AC交邊AB于點E,DF∥AB交邊AC于點F.
(1)如圖1,試判斷四邊形AEDF的形狀,并說明理由;
(2)如圖2,若AD=4,點H,G分別在線段AE,AF上,且EH=AG=3,連接EG交AD于點M,連接FH交EG于點N.
(i)求ENEG的值;
(ii)將線段DM繞點D順時針旋轉(zhuǎn)60°得到線段DM′,求證:H,F,M′三點在同一條直線上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+m(m為常數(shù))的圖象與x軸交于A(﹣3,0),與y軸交于點C.以直線x=﹣1為對稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),且a>0)經(jīng)過A,C兩點,與x軸正半軸交于點B.
(1)求一次函數(shù)及拋物線的函數(shù)表達(dá)式;
(2)P為線段AC上的一個動點(點P與C、A不重合)過P作x軸的垂線與這個二次函數(shù)的圖象交于點D,連接CD,AD,點P的橫坐標(biāo)為n,當(dāng)n為多少時,△CDA的面積最大,最大面積為多少?
(3)在對稱軸上是否存在一點E,使∠ACB=∠AEB?若存在,求點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以點O為位似中心,將五邊形ABCDE放大后得到五邊形A′B′C′D′E′,已知OA=10cm,OA′=20cm,則五邊形ABCDE的周長與五邊形A′B′C′D′E′的周長比是( 。
A.1:2B.2:1C.1:3D.3:1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點,OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當(dāng)∠ODB=30°時,求證:BC=OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,己知二次函數(shù)的圖像與y軸交于點B(0, 4),與x軸交于點A(-1,0)和點D.
(1)求二次函數(shù)的解析式;
(2)求拋物線的頂點和點D的坐標(biāo);
(3)在拋物線上是否存在點P,使得△BOP的面積等于?如果存在,請求出點P的坐標(biāo)?如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com