【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O與BC相交于點D,過點D作⊙O的切線與AB相交于點E.

(1)求證:DE⊥AB;

(2)若BE=2,BC=6,求⊙O的直徑.

【答案】(1)證明見解析;(2)⊙O的直徑為

【解析】

(1)連接AD,OD,得出AD⊥BC,再根據(jù)AB=AC得出BD=CD,得出OD是三角形ABC的中位線,從而得出OD∥AB,從而得證;

(2)根據(jù)BE=2,BC=6得出,易證△AED∽△ADC,AEa,AD=3a,解直角三角形AED得出a的值,從而求算AB,算出直徑.

(1)連接AD,OD.

∵AC是⊙O的直徑,

∴AD⊥BC.

∵AB=AC,

∴BD=CD.

∵AO=CO,

∴OD∥AB,

∴DE⊥AB;

(2)∵DE⊥AB,

∴∠BED=∠AED=90°.

∵BE=2,BC=6,

∴BD=CD=3,

∴DE,

∵∠AED=∠ADC=90°,∠BAD=∠CAD,

∴△AED∽△ADC,

,

設(shè)AEa,AD=3a.

∵AE2+DE2=AD2

∴5a2+5=9a2,

∴a(負(fù)值舍去),

∴AE,

∴AB=AE+BE,

∴⊙O的直徑為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在等腰三角形ABC中,ABAC8BC14.如圖②,在底邊BC上取一點D,連結(jié)AD,使得∠DAC=∠ACD.如圖③,將ACD沿著AD所在直線折疊,使得點C落在點E處,連結(jié)BE,得到四邊形ABED.則BE的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過點(12),(5,3),則下列說法正確的是( 。

①拋物線與y軸有交點

②若拋物線經(jīng)過點(22),則拋物線的開口向上

③拋物線的對稱軸不可能是x=3

④若拋物線的對稱軸是x=4,則拋物線與x軸有交點

A.①②③④B.①②③C.①③④D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠BAC=60°,AD平分∠BAC交邊BC于點D,分別過DDEAC交邊AB于點EDFAB交邊AC于點F

(1)如圖1,試判斷四邊形AEDF的形狀,并說明理由;

(2)如圖2,若AD=4,點H,G分別在線段AEAF上,且EH=AG=3,連接EGAD于點M,連接FHEG于點N

(i)ENEG的值;

(ii)將線段DM繞點D順時針旋轉(zhuǎn)60°得到線段DM,求證:HF,M三點在同一條直線上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+mm為常數(shù))的圖象與x軸交于A(﹣30),與y軸交于點C.以直線x=﹣1為對稱軸的拋物線yax2+bx+ca,b,c為常數(shù),且a0)經(jīng)過A,C兩點,與x軸正半軸交于點B
1)求一次函數(shù)及拋物線的函數(shù)表達(dá)式;

2P為線段AC上的一個動點(點PC、A不重合)過Px軸的垂線與這個二次函數(shù)的圖象交于點D,連接CD,AD,點P的橫坐標(biāo)為n,當(dāng)n為多少時,CDA的面積最大,最大面積為多少?

3)在對稱軸上是否存在一點E,使∠ACB=∠AEB?若存在,求點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點O為位似中心,將五邊形ABCDE放大后得到五邊形ABCDE,已知OA10cmOA20cm,則五邊形ABCDE的周長與五邊形ABCDE的周長比是( 。

A.12B.21C.13D.31

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點,FAM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N

1)求證:△ABM∽△EFA

2)若AB=12,BM=5,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB⊙O的直徑,D⊙O上一點,OD⊥AC,垂足為E,連接BD.

(1)求證:BD平分∠ABC;

(2) 當(dāng)∠ODB=30°時,求證:BC=OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,己知二次函數(shù)的圖像與y軸交于點B(0, 4),與x軸交于點A(1,0)和點D

(1)求二次函數(shù)的解析式;

(2)求拋物線的頂點和點D的坐標(biāo);

(3)在拋物線上是否存在點P,使得△BOP的面積等于?如果存在,請求出點P的坐標(biāo)?如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案