【題目】如圖,AB為⊙O直徑,過⊙O外的點D作DE⊥OA于點E,射線DC切⊙O于點C、交AB的延長線于點P,連接AC交DE于點F,作CH⊥AB于點H.
(1)求證:∠D=2∠A;
(2)若HB=2,cosD=,請求出⊙O的半徑長.
【答案】(1)見解析;(2)5.
【解析】分析:(1)連接OC,根據(jù)切線的性質(zhì)得到∠OCP=90°,根據(jù)垂直的定義得到∠DEP=90°,得到∠COB=∠D,根據(jù)圓周角定理證明;
(2)設(shè)⊙O的半徑為r,根據(jù)余弦的定義計算即可.
詳解:
(1)證明:連接OC,
∵射線DC切⊙O于點C, ∴∠OCP=90°
∵DE⊥AP,∴∠DEP=90°
∴∠P+∠D=90°,∠P+∠COB=90°
∴∠COB=∠D
∵OA=OC, ∴∠A=∠OCA
∵∠COB=∠A+∠OCA ∴∠COB=2∠A
∴∠D=2∠A
(2)解:由(1)可知:∠OCP=90°,∠COP=∠D,
∴cos∠COP=cos∠D=,
∵CH⊥OP,∴∠CHO=90°,
設(shè)⊙O的半徑為r,則OH=r﹣2.
在Rt△CHO中,cos∠HOC===,
∴r=5
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017浙江省湖州市,第23題,10分)湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了20000kg淡水魚,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費用+收購成本).
(1)設(shè)每天的放養(yǎng)費用是a萬元,收購成本為b萬元,求a和b的值;
(2)設(shè)這批淡水魚放養(yǎng)t天后的質(zhì)量為m(kg),銷售單價為y元/kg.根據(jù)以往經(jīng)驗可知:m與t的函數(shù)關(guān)系為;y與t的函數(shù)關(guān)系如圖所示.
①分別求出當0≤t≤50和50<t≤100時,y與t的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚放養(yǎng)t天后一次性出售所得利潤為W元,求當t為何值時,W最大?并求出最大值.(利潤=銷售總額﹣總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“水是生命之源”,某市自來水公司為了鼓勵居民節(jié)約用水,規(guī)定按以下標準收取水費:
用水量/月 | 單價(元/m3) |
不超過20m3 | 2.8 |
超過20m3的部分 | 3.8 |
另:每立方米用水加收0.2元的城市污水處理費 |
(1)根據(jù)上表,用水量每月不超過20m3,實際每立方米收水費_____元;如果1月份某用戶用水量為19m3,那么該用戶1月份應(yīng)該繳納水費____元;
(2)某用戶2月份共繳納水費80元,那么該用戶2月份用水多少m3?
(3)若該用戶水表3月份出了故障,只有70%的用水量記入水表中,這樣該用戶在3月份只繳納了58.8元水費,問該用戶3月份實際應(yīng)該繳納水費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價均為60元/盒.
(1)2014年這種禮盒的進價是多少元/盒?
(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P點是∠AOB平分線上一點,PC⊥OA,PD⊥OB,垂足為C、D。
(1)求證:∠PCD=∠PDC;(2)求證:OP垂直平分線段CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=120°,OC是∠AOB內(nèi)部任意一條射線,OD,OE分別是∠AOC,∠BOC的角平分線,下列敘述正確的是( )
A. ∠AOD+∠BOE=60°B. ∠AOD=∠EOC
C. ∠BOE=2∠CODD. ∠DOE的度數(shù)不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD、MN相交與點O,FO⊥BO,OM平分∠DOF
(1)請直接寫出圖中所有與∠AON互余的角: .
(2)若∠AOC=∠FOM,求∠MOD與∠AON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,等邊三角形沿射線向右平移到的位置,連接、,則下列結(jié)論:(1)(2)與互相平分(3)四邊形是菱形(4),其中正確的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,把△ABC折疊,使點B與點A重合,折痕交AB于點M,交BC于點N.如果△CAN是等腰三角形,則∠B的度數(shù)為___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com