【題目】ABC中,AB=AC,把ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕交AB于點(diǎn)M,交BC于點(diǎn)N.如果CAN是等腰三角形,則B的度數(shù)為___________

【答案】

【解析】

MNAB的中垂線,則△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后對(duì)△ANC中的邊進(jìn)行討論,然后在△ABC中,利用三角形內(nèi)角和定理即可求得∠B的度數(shù).

解:△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕交AB于點(diǎn)M,交BC于點(diǎn)N

∴MNAB的中垂線.

∴NB=NA

∴∠B=∠BAN

∵AB=AC

∴∠B=∠C

設(shè)∠B=x°,則∠C=∠BAN=x°

1)當(dāng)AN=NC時(shí),∠CAN=∠C=x°

則在△ABC中,根據(jù)三角形內(nèi)角和定理可得:4x=180,

解得:x=45°∠B=45°;

2)當(dāng)AN=AC時(shí),∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此時(shí)不成立;

3)當(dāng)CA=CN時(shí),∠NAC=∠ANC=

△ABC中,根據(jù)三角形內(nèi)角和定理得到:x+x+x+=180,

解得:x=36°

∠B的度數(shù)為 45°36°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O直徑,過(guò)⊙O外的點(diǎn)D作DE⊥OA于點(diǎn)E,射線DC切⊙O于點(diǎn)C、交AB的延長(zhǎng)線于點(diǎn)P,連接AC交DE于點(diǎn)F,作CH⊥AB于點(diǎn)H.

(1)求證:∠D=2∠A;

(2)若HB=2,cosD=,請(qǐng)求出⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCDAD=12,AB=9,EAD的中點(diǎn),GDC上一點(diǎn),連接BE,BGGE,并延長(zhǎng)GEBA的延長(zhǎng)線于點(diǎn)FGC=5

1)求BG的長(zhǎng)度;

2)求證:是直角三角形

3)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖O為直線AB上一點(diǎn),∠AOC50°,OD平分∠AOC,∠DOE90°

1)求∠BOD的度數(shù);

2)試判斷OE是否平分∠BOC,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)探索發(fā)現(xiàn):如圖1,已知RtABC中,∠ACB90°,ACBC,直線l過(guò)點(diǎn)C,過(guò)點(diǎn)AADl,過(guò)點(diǎn)BBEl,垂足分別為D、E.求證:ADCE,CDBE

2)遷移應(yīng)用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標(biāo)系內(nèi),三角板的一個(gè)銳角的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,另兩個(gè)頂點(diǎn)均落在第一象限內(nèi),已知點(diǎn)M的坐標(biāo)為(1,3),求點(diǎn)N的坐標(biāo).

3)拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系內(nèi),已知直線y=﹣3x+3y軸交于點(diǎn)P,與x軸交于點(diǎn)Q,將直線PQP點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)45°后,所得的直線交x軸于點(diǎn)R.求點(diǎn)R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,已知,,試把下面運(yùn)用“疊合法”說(shuō)明全等的過(guò)程補(bǔ)充完整:

說(shuō)理過(guò)程:把放到上,使點(diǎn)A與點(diǎn)重合,因?yàn)?/span> ,所以可以使 ,并使點(diǎn)CAB)同一側(cè),這時(shí)點(diǎn)A重合,點(diǎn)B重合,由于 ,因此, ;

由于 ,因此, ;于是點(diǎn)C(射線ACBC的交點(diǎn))與點(diǎn)(射線的交點(diǎn))重合,這樣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長(zhǎng)為半徑作弧,分別交AB,AD于點(diǎn)M,N②分別以M,N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P③作射線AP,交邊CD于點(diǎn)Q,若DQ=2QC,BC=2,則平行四邊形ABCD的周長(zhǎng)為( ).

A.6B.8C.10D.12.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D的中點(diǎn),作DEAC,交AB的延長(zhǎng)線于點(diǎn)F,連接DA

1)求證:EF為半圓O的切線;

2)若DA=DF=,求陰影區(qū)域的面積.(結(jié)果保留根號(hào)和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直線上,線段,動(dòng)點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度在直線上運(yùn)動(dòng).的中點(diǎn),的中點(diǎn),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.

1)若點(diǎn)在線段上的運(yùn)動(dòng),當(dāng)時(shí),________;

2)若點(diǎn)在射線上的運(yùn)動(dòng),當(dāng)時(shí),求點(diǎn)的運(yùn)動(dòng)時(shí)間的值;

3)當(dāng)點(diǎn)在線段的反向延長(zhǎng)線上運(yùn)動(dòng)時(shí),線段ABPM、PN有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的結(jié)論,并說(shuō)明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案