【題目】如圖,在矩形ABCD中AD=12,AB=9,E為AD的中點(diǎn),G是DC上一點(diǎn),連接BE,BG,GE,并延長(zhǎng)GE交BA的延長(zhǎng)線于點(diǎn)F,GC=5
(1)求BG的長(zhǎng)度;
(2)求證:是直角三角形
(3)求證:
【答案】(1)13(2)見解析(3)見解析
【解析】
(1)在Rt△BCG中利用勾股定理即可求解;
(2)利用勾股定理依次求出BE,EG,再利用勾股定理逆定理即可證明;
(3)由E點(diǎn)為AD中點(diǎn)得到E為FG中點(diǎn),再根據(jù)BE⊥FG得到△BFG為等腰三角形,得到∠F=∠BGF,再根據(jù)平行線的性質(zhì)即可證明.
(1)∵四邊形ABCD為矩形,∴BC=AD=12,∠C=90°,
∴BG=
(2)∵E為AD中點(diǎn),∴AE=DE=6,
∴BE=
∵DG=CD-GC=4,
∴EG=
∴BG2=DG2+EG2,
∴是直角三角形
(3)∵AE=DE,∠FAE=∠D=90°,又∠AEF=∠DEG,
∴△AEF≌△DEG,
∴E為EG中點(diǎn),又BE⊥FG,
∴△BFG為等腰三角形,
∴∠F=∠BGF,
又BF∥CD,
∴∠F=
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“水是生命之源”,某市自來(lái)水公司為了鼓勵(lì)居民節(jié)約用水,規(guī)定按以下標(biāo)準(zhǔn)收取水費(fèi):
用水量/月 | 單價(jià)(元/m3) |
不超過(guò)20m3 | 2.8 |
超過(guò)20m3的部分 | 3.8 |
另:每立方米用水加收0.2元的城市污水處理費(fèi) |
(1)根據(jù)上表,用水量每月不超過(guò)20m3,實(shí)際每立方米收水費(fèi)_____元;如果1月份某用戶用水量為19m3,那么該用戶1月份應(yīng)該繳納水費(fèi)____元;
(2)某用戶2月份共繳納水費(fèi)80元,那么該用戶2月份用水多少m3?
(3)若該用戶水表3月份出了故障,只有70%的用水量記入水表中,這樣該用戶在3月份只繳納了58.8元水費(fèi),問(wèn)該用戶3月份實(shí)際應(yīng)該繳納水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD、MN相交與點(diǎn)O,FO⊥BO,OM平分∠DOF
(1)請(qǐng)直接寫出圖中所有與∠AON互余的角: .
(2)若∠AOC=∠FOM,求∠MOD與∠AON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,等邊三角形沿射線向右平移到的位置,連接、,則下列結(jié)論:(1)(2)與互相平分(3)四邊形是菱形(4),其中正確的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某風(fēng)景區(qū)門票價(jià)格如圖所示,有甲、乙兩個(gè)旅行團(tuán)隊(duì),計(jì)劃在端午節(jié)期間到該景點(diǎn)游玩,兩團(tuán)隊(duì)游客人數(shù)之和為100人,乙團(tuán)隊(duì)人數(shù)不超過(guò)40人.設(shè)甲團(tuán)隊(duì)人數(shù)為人,如果甲、乙兩團(tuán)隊(duì)分別購(gòu)買門票,兩團(tuán)隊(duì)門票款之和為元.
(1)直接寫出關(guān)于的函數(shù)關(guān)系式,并寫出自變的取值范圍;
(2)若甲團(tuán)隊(duì)人數(shù)不超過(guò)80人,計(jì)算甲、乙兩團(tuán)隊(duì)聯(lián)合購(gòu)票比分別購(gòu)票最多可節(jié)約多少錢?
(3)端午節(jié)之后,該風(fēng)景區(qū)對(duì)門票價(jià)格作了如下調(diào)整:人數(shù)不超過(guò)40人時(shí),門票價(jià)格不變,人數(shù)超過(guò)40人但不超過(guò)80人時(shí),每張門票降價(jià)元;人數(shù)超過(guò)80人時(shí),每張門票降價(jià)元.在(2)的條件下,若甲、乙兩個(gè)旅行團(tuán)端午節(jié)之后去游玩聯(lián)合購(gòu)票比分別購(gòu)票最多可節(jié)約3900元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,BD是正方形ABCD的對(duì)角線,BC=4,點(diǎn)H是AD邊上的一動(dòng)點(diǎn),連接CH,作,使得HE=CH,連接AE。
(1)求證:;
(2)如圖2,過(guò)點(diǎn)E作EF//AD交對(duì)角線BD于點(diǎn)F,試探究:在點(diǎn)H的運(yùn)動(dòng)過(guò)程中,EF的長(zhǎng)度是否為一個(gè)定值;如果是,請(qǐng)求出EF的長(zhǎng)度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)尋寶游戲的尋寶通道如圖①所示,通道由在同一平面內(nèi)的AB,BC,CA,OA, OB,OC組成。為記錄尋寶者的行進(jìn)路線,在BC的中點(diǎn)M處放置了一臺(tái)定位儀器,設(shè)尋寶者行進(jìn)的時(shí)間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進(jìn),且表示y與x的函數(shù)關(guān)系的圖像大致如圖②所示,則尋寶者的行進(jìn)路線可能為:
A. A→O→B B. B→A→C C. B→O→C D. C→B→O
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,把△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕交AB于點(diǎn)M,交BC于點(diǎn)N.如果△CAN是等腰三角形,則∠B的度數(shù)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,點(diǎn)A的縱坐標(biāo)、點(diǎn)B的橫坐標(biāo)如圖所示.
(1)求直線AB的解析式;
(2)點(diǎn)P在直線AB上,是否存在點(diǎn)P使得△AOP的面積為1,如果有請(qǐng)直接寫出所有滿足條件的點(diǎn)P的坐標(biāo)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com