【題目】如圖1,BD是正方形ABCD的對角線,BC=4,點HAD邊上的一動點,連接CH,作,使得HE=CH,連接AE。

(1)求證:;

2)如圖2,過點EEF//AD交對角線BD于點F,試探究:在點H的運動過程中,EF的長度是否為一個定值;如果是,請求出EF的長度。

【答案】1)見解析(2EF為定值4

【解析】

1)根據(jù)CHHE與正方形的內(nèi)角為90°即可證明;

2)連接FH,作EMAG延長線,可證明四邊形EFHM為矩形,再得到EF=HM=DC即可求解.

1)∵CHHE

∠CHD+∠AHE=90°,

∠DCH+∠CHD=90°,

2)連接FH,作EMAG延長線,

EF//AD,FHDA,四邊形EFHM為矩形

EF=HM

CH=HE,又∠CDH=∠HME=90°,

∴△CDH≌△HME

HM=CD

EF=CD=4為定值.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c的圖像與x軸的一個交點為A(1,0),另一個交點為B,且與y軸交于點C(0,5).

(1)求直線BC及拋物線的解析式;

(2)若點M是拋物線在x軸下方圖像上的一動點,過點M作MN∥y軸交直線BC于點N,求MN的最大值;

(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖像上任意一點,以BC為邊作CBPQ,設(shè)CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)場去年計劃生產(chǎn)玉米和小麥共200噸.采用新技術(shù)后,實際產(chǎn)量為225噸,其中玉米超產(chǎn)5%,小麥超產(chǎn)15%.該農(nóng)場去年實際生產(chǎn)玉米、小麥各多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】月電科技有限公司用160萬元,作為新產(chǎn)品的研發(fā)費用,成功研制出了一種市場急需的電子

產(chǎn)品,已于當年投入生產(chǎn)并進行銷售.已知生產(chǎn)這種電子產(chǎn)品的成本為4元/件,在銷售過程中發(fā)現(xiàn):

每年的年銷售量(萬件)與銷售價格(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一

部分,BC為一次函數(shù)圖象的一部分.設(shè)公司銷售這種電子產(chǎn)品的年利潤為(萬元).(注:若上一

年盈利,則盈利不計入下一年的年利潤;若上一年虧損,則虧損計作下一年的成本.)

(1)請求出(萬件)與(元/件)之間的函數(shù)關(guān)系式;

(2)求出第一年這種電子產(chǎn)品的年利潤(萬元)與(元/件)之間的函數(shù)關(guān)系式,并求出第一年年利潤的最大值;

(3)假設(shè)公司的這種電子產(chǎn)品第一年恰好按年利潤(萬元)取得最大值時進行銷售,現(xiàn)根據(jù)第一年的盈虧情況,決定第二年將這種電子產(chǎn)品每件的銷售價格(元)定在8元以上(),當?shù)诙甑哪昀麧櫜坏陀?03萬元時,請結(jié)合年利潤(萬元)與銷售價格(元/件)的函數(shù)示意圖,求銷售價格(元/件)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCDAD=12AB=9,EAD的中點,GDC上一點,連接BE,BGGE,并延長GEBA的延長線于點F,GC=5

1)求BG的長度;

2)求證:是直角三角形

3)求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點為線段延長線上的一點,點的中點,且點不與點重合,,設(shè)

①若,如圖2,則 ;

②用含的代數(shù)式表示的長,直接寫出答案; , ;

若點為線段上一點,且,你能說明點是線段的中點嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖O為直線AB上一點,∠AOC50°,OD平分∠AOC,∠DOE90°

1)求∠BOD的度數(shù);

2)試判斷OE是否平分∠BOC,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,已知,,,試把下面運用“疊合法”說明全等的過程補充完整:

說理過程:把放到上,使點A與點重合,因為 ,所以可以使 ,并使點CAB)同一側(cè),這時點A重合,點B重合,由于 ,因此, ;

由于 ,因此, ;于是點C(射線ACBC的交點)與點(射線的交點)重合,這樣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形 ACDE 是證明勾股定理時用到的一個圖形,ab 、cRtABCRtBED 的邊長,已知,這時我們把關(guān)于 x 的形如二次方程稱為勾系一元二次方程

請解決下列問題:

(1)寫出一個勾系一元二次方程;

(2)求證:關(guān)于 x勾系一元二次方程,必有實數(shù)根;

(3)若 x 1勾系一元二次方程的一個根,且四邊形 ACDE 的周長是6,求ABC 的面積.

查看答案和解析>>

同步練習冊答案