【題目】如圖,它表示甲乙兩人從同一個地點出發(fā)后的情況。到10:00時,甲大約走了13千米。根據(jù)圖象回答:

1)甲是幾點鐘出發(fā)?

2)乙是幾點鐘出發(fā),到十點時,他大約走了多少千米?

3)到10:00為止,哪個人的速度快?

4)兩人在途中有幾次相遇?分別在幾點鐘相遇?

【答案】18點鐘,(29點鐘,13千米,(3)乙,(42次,10點和12

【解析】

根據(jù)圖象可知甲做變速運動,8點到11點走了20千米,速度為每小時千米,11點到12點走了20千米,速度為每小時20千米;乙做的是勻速運動,9點到12點走了40千米,速度是每小時千米.

解:根據(jù)圖象可知:

(1)8點出發(fā);

(2)9點出發(fā);到10時他大約走了13千米;

(3)10時為止,乙的速度快;

(4)兩人相遇了2次,分別在10點和12點相遇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值.

(x2)2(x1)(x1), 再選取一個你喜歡的數(shù)代入x求值.

,其中.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數(shù)學(xué)課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調(diào)査了部分學(xué)生,調(diào)查結(jié)果分為五種:A非常了解,B比較了解,C基本了解,D不太了解,E完全不知.實踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖請根據(jù)以上信息,解答下列問題:

1)本次共調(diào)查了   名學(xué)生,扇形統(tǒng)計圖中D所對應(yīng)扇形的圓心角為   度;

2)把這幅條形統(tǒng)計圖補充完整(畫圖后請標注相應(yīng)的數(shù)據(jù));

3)該校共有800名學(xué)生,根據(jù)以上信息,請你估計全校學(xué)生中對這些交通法規(guī)“非常了解”的有   名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB60cm

1)如圖1,點P沿線段ABA點向B點以2厘米/秒運動,同時點Q沿線段BAB A點以4厘米/秒運動,問經(jīng)過幾秒后P、Q相遇?

2)在(1)的條件下,幾秒鐘后,PQ相距12cm?

3)如圖2AOPO10厘米,∠POB40°,點P繞著點O10/秒的速度順時針 旋轉(zhuǎn)一周停止,同時點Q沿線段BAB點向A點運動,假若點P、Q兩點能相遇,求點Q運動的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,的頂點坐標分別為、.

1)不用畫圖,請直接寫出關(guān)于軸對稱的圖形的三個頂點的坐標: , , ;

2)在圖中畫出關(guān)于直線(直線上各點的橫坐標都為1)對稱的圖形,并直接寫出三個頂點的坐標: , ;

3)若內(nèi)有任意一點的坐標為,則在關(guān)于直線(直線上各點的橫坐標都為1)對稱的圖形上,點的對應(yīng)點的坐標 .(用含的式子表示)

(建議:先用鉛筆畫圖,確定無誤后用黑色水性筆畫在答題卡上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論:①平面內(nèi)3條直線兩兩相交,共有3個交點;②在平面內(nèi),若∠AOB =40°,∠AOC= BOC,則∠AOC的度數(shù)為20°;③若線段AB=3, BC=2,則線段AC的長為15;④若∠a+β=180°,且∠a<β,則∠a的余角為(β-a).其中正確結(jié)論的個數(shù)(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中有四條互相不平行的直線L1、L2L3、L4所截出的七個角.關(guān)于這七個角的度數(shù)關(guān)系,下列何者正確( 。

A. ∠2=∠4+∠7 B. ∠3=∠1+∠6 C. ∠1+∠4+∠6=180° D. ∠2+∠3+∠5=360°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2bxc經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.

(1)求拋物線的函數(shù)關(guān)系式;

(2)設(shè)點P是直線l上的一個動點,當PAC的周長最小時,求點P的坐標;

(3)在直線l上是否存在點M,使MAC為等腰三角形?若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知∠DAC=90°,ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結(jié)CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點E.

(1)如圖1,猜想∠QEP=   °;

(2)如圖2,3,若當∠DAC是銳角或鈍角時,其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;

(3)如圖3,若∠DAC=135°,ACP=15°,且AC=4,求BQ的長.

查看答案和解析>>

同步練習(xí)冊答案