【題目】如圖,在平面直角坐標(biāo)系中,將線段AB繞點A按逆時針方向旋轉(zhuǎn)90°后,得到線段AB′,則點B′的坐標(biāo)為__________.
【答案】(4,2)
【解析】
試題考查知識點:圖形繞固定點旋轉(zhuǎn)
思路利用網(wǎng)格做直角三角形AMB,讓△AMB逆時針旋轉(zhuǎn)90°,也就使AB逆時針旋轉(zhuǎn)了90°,由輕易得知,圖中的AB′就是旋轉(zhuǎn)后的位置。點B′剛好在網(wǎng)格格點上,坐標(biāo)值也就非常明顯了。
具體解答過程:
如圖所示。做AM∥x軸、BM∥y軸,且AM與BM交于M點,則△AMB為直角三角形,
線段AB繞點A按逆時針方向旋轉(zhuǎn)90°,可以視為將△AMB逆時針方向旋轉(zhuǎn)90°()得到△ANB′后的結(jié)果。
∴,AN⊥x軸,NB′⊥y軸,點B′剛好落在網(wǎng)格格點處
∵線段AB上B點坐標(biāo)為(1,3)
∴點B′的橫坐標(biāo)值為:1+3=4;縱坐標(biāo)值為:3-1=2
即點B′的坐標(biāo)為(4,2)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點E,交BC于點D,P為AC延長線上一點,且∠PBC=∠BAC,連接DE,BE.
(1)求證:BP是⊙O的切線;
(2)若sin∠PBC=,AB=10,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°.點O是AB的中點,邊AC=6,將邊長足夠大的三角板的直角頂點放在點O處,將三角板繞點0旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點為點E,另條直角邊與BC相交,交點為D,則等腰直角三角板的直角邊被三角板覆蓋部分的兩條線段CD與CE的長度之和為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠BAC=65°,D為∠BAC內(nèi)部一點,過D作DB⊥AB于B,DC⊥AC于C,設(shè)點E、點F分別為AB、AC上的動點,當(dāng)△DEF的周長最小時,∠EDF的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.
(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ中PQ的長度等于5cm?
(3)在(1)中,當(dāng)P,Q出發(fā)幾秒時,△PBQ有最大面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“基善一日捐冊”活動中,為了解某校學(xué)生的捐款情況,抽樣調(diào)查了該校部分學(xué)生的捐款數(shù)(單位:元),并繪制成下面的統(tǒng)計圖.
(1)本次調(diào)查中,一共調(diào)查了________名同學(xué);
(2)抽查學(xué)生捐款數(shù)額的眾數(shù)是_______元,中位數(shù)是_______元;
(3)該校共有600名學(xué)生參與捐款,請你估計該校學(xué)生捐款不少于15元的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)
截長補(bǔ)短法,是初中數(shù)學(xué)兒何題中一種輸助線的添加方法,截長就是在長邊上載取一條線段與某一短邊相等,補(bǔ)短是通過在一條短邊上延長一條線段與另一短邊相等,從而解決問題.
(1)如圖1,△ABC是等邊三角形,點D是邊BC下方一點,∠BDC=120°,探索線段DA、DB、DC之間的數(shù)量關(guān)系.
解題思路:延長DC到點E,使CE=BD.連接AE,根據(jù)∠BAC+∠BDC=180°,可證∠ABD=∠ACE,易證得△ABD≌△ACE,得出△ADE是等邊三角形,所以AD=DE,從而探尋線段DA、DB、DC之間的數(shù)量關(guān)系.
根據(jù)上述解題思路,請直接寫出DA、DB、DC之間的數(shù)量關(guān)系是___________
(拓展延伸)
(2)如圖2,在Rt△ABC中,∠BAC=90°,AB=AC.若點D是邊BC下方一點,∠BDC=90°,探索線段DA、DB、DC之間的數(shù)量關(guān)系,并說明理由;
(知識應(yīng)用)
(3)如圖3,一副三角尺斜邊長都為14cm,把斜邊重疊擺放在一起,則兩塊三角尺的直角項點之間的距離PQ的長為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.
(1)若某反比例函數(shù)的圖象的一個分支恰好經(jīng)過點A,求這個反比例函數(shù)的解析式;
(2)若把含30°角的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.
【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.
本題解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴點A的坐標(biāo)為(3,3).
設(shè)反比例函數(shù)的解析式為y= (k≠0),
∴3=,∴k=9,則這個反比例函數(shù)的解析式為y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由題意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S陰影=S扇形AOA′-S△ODC=6π-.
點睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
26
【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.
(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.
① 求證:△OCP∽△PDA;
② 若△OCP與△PDA的面積比為1:4,求邊AB的長.
(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD∽四邊形A′B′C′D′,且AB∶BC∶CD∶DA=20∶15∶9∶8,四邊形A′B′C′D′的周長為26,求四邊形A′B′C′D′各邊的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com