【題目】公元前5世紀,畢達哥拉斯學派中的一名成員希伯索斯發(fā)現(xiàn)了無理數(shù),導致了第一次數(shù)學危機.是無理數(shù)的證明如下:

假設是有理數(shù),那么它可以表示成是互質的兩個正整數(shù)).于是,所以,.于是是偶數(shù),進而是偶數(shù).從而可設,所以,,于是可得也是偶數(shù).這與是互質的兩個正整數(shù)矛盾,從而可知是有理數(shù)的假設不成立,所以,是無理數(shù).這種證明是無理數(shù)的方法是( )

A.綜合法B.反證法C.舉反例法D.數(shù)學歸納法

【答案】B

【解析】

利用反證法的一般步驟是:①假設命題的結論不成立;②從這個假設出發(fā),經(jīng)過推理論證,得出矛盾;③由矛盾判定假設不正確,從而肯定原命題的結論正確,進而判斷即可.

解:由題意可得:這種證明是無理數(shù)的方法是反證法.
故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形中,在邊上取兩點,使.若,, 則以,,為邊長的三角形的形狀為(

A.銳角三角形B.直角三角形C.鈍角三角形D.,的值而定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,等腰Rt△CEF的斜邊CE在正方形ABCD的邊BC的延長線上,CF>BC,取線段AE的中點M 。

(1)求證:MD=MF,MD⊥MF
(2)若Rt△CEF繞點C順時針旋轉任意角度(如圖2),其他條件不變。(1)中的結論是否仍然成立,若成立,請證明,若不成立,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線的解析式為,分別交軸、軸于點

1)寫出兩點的坐標,并畫出直線的圖象.(不需列表);

2)將直線向左平移4個單位得到軸于點.作出的圖象,的解析式是___________

3)過的頂點能否畫出直線把分成面積相等的兩部分?若能,可以畫出幾條?直接寫出滿足條件的直線解析式.(不必在圖中畫出直線)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某小區(qū)的一個健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端點A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DE垂直平分AB,分別交的邊、平分.設,

1)求關于的函數(shù)關系式;

2)當為等腰三角形時,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,頂點A,C分別在坐標軸上,頂點B的坐標為(4,2).過點D(0,3)和E(6,0)的直線分別與AB,BC交于點M,N.

(1)求直線DE的解析式和點M的坐標;
(2)若反比例函數(shù) (x>0)的圖象經(jīng)過點M,求該反比例函數(shù)的解析式,并通過計算判斷點N是否在該函數(shù)的圖象上;
(3)若反比例函數(shù) (x>0)的圖象與△MNB有公共點,請直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中AB=AC=4,∠C=72°,D是AB中點,點E在AC上,DE⊥AB,則cosA的值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案