精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在等邊三角形中,在邊上取兩點,使.若,,, 則以,為邊長的三角形的形狀為(

A.銳角三角形B.直角三角形C.鈍角三角形D.,,的值而定

【答案】C

【解析】

將△ABM繞點B順時針旋轉60得到△CBH.連接HN.想辦法證明∠HCN120,HNMNx即可解決問題;

將△ABM繞點B順時針旋轉60得到△CBH.連接HN

∵△ABC是等邊三角形,

∴∠ABC=∠ACB=∠A60

∵∠MON30,

∴∠ABM+∠CBN30,

∴∠NBH=∠CBH+∠CBN30,

∴∠NBM=∠NBH,

BMBHBNBN,

∴△NBM≌△NBH,

MNNHx,

∵∠BCH=∠A60,CHAMn,

∴∠NCH120,

x,mn為邊長的三角形△NCH是鈍角三角形,

故選:C

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結論:①b2﹣4ac<0;②當x>﹣1時,y隨x增大而減。虎踑+b+c<0;④若方程ax2+bx+c﹣m=0沒有實數根,則m>2;、3a+c<0.其中正確結論的個數是( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程x2+2mx+m2-1=0.
(1)不解方程,判別方程的根的情況;
(2)若方程有一個根為3,求m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,∠AOC的平分線交AB于點D,E為BC的中點,已知A(0,4)、C(5,0),二次函數 的圖象拋物線經過A、C兩點.

(1)求該二次函數的表達式;
(2)F,G分別為x軸、y軸上的動點,首尾順次連接D、E、F、G構成四邊形DEFG,求四邊形DEFG周長的最小值;
(3)拋物線上是否存在點P,使△ODP的面積為8?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN

1)將兩個矩形疊合成如圖10,求證:四邊形ABCD是菱形;

2)若菱形ABCD的周長為20,BE=3,求矩形BEDG的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,ABCD,∠B70°,∠BCE20°,∠CEF130°,請判斷ABEF的位置關系,并說明理由.

解:   ,理由如下:

ABCD

∴∠B=∠BCD,(   

∵∠B70°,

∴∠BCD70°,(   

∵∠BCE20°,

∴∠ECD50°,

∵∠CEF130°,

   +   180°,

EF   ,(   

ABEF.(   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,點E、F、G、H分別在AB、BC、CD、AD邊上且AE=CG,AH=CF.
(1)求證:四邊形EFGH是平行四邊形;
(2)如果AB=AD,且AH=AE,求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,直線a 、b被直線c所截,現給出下列四種條件:

①∠2=∠6 ②∠2=∠8 ③∠1+∠4180° ④∠3=∠8,其中能判斷是ab的條件的序號是(

A. ①② B. ①③ C. ①④ D. ③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】公元前5世紀,畢達哥拉斯學派中的一名成員希伯索斯發(fā)現了無理數,導致了第一次數學危機.是無理數的證明如下:

假設是有理數,那么它可以表示成是互質的兩個正整數).于是,所以,.于是是偶數,進而是偶數.從而可設,所以,于是可得也是偶數.這與是互質的兩個正整數矛盾,從而可知是有理數的假設不成立,所以,是無理數.這種證明是無理數的方法是( )

A.綜合法B.反證法C.舉反例法D.數學歸納法

查看答案和解析>>

同步練習冊答案