【題目】如圖,D,E,F分別是OA,OBOC的中點,下面的說法中:①△ABCDEF是位似圖形;②△ABCDEF的相似比為12;③△ABCDEF的周長之比為21;④△ABCDEF的面積之比為41.正確的是( )

A. ①②③ B. ①③④ C. ①②④ D. ②③④

【答案】B

【解析】

試題根據(jù)位似圖形的性質(zhì),得出①△ABC△DEF是位似圖形,進(jìn)而根據(jù)位似圖形一定是相似圖形得出②△ABC△DEF是相似圖形,再根據(jù)周長比等于位似比,以及根據(jù)面積比等于相似比的平方,即可得出答案.

解:根據(jù)位似性質(zhì)得出①△ABC△DEF是位似圖形,

②△ABC△DEF是相似圖形,且相似比是:=2

③△ABC△DEF的周長比等于相似比,即21,

根據(jù)面積比等于相似比的平方,則△ABC△DEF的面積比為41

綜上所述,正確的結(jié)論是:①③④

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°,ADBC,垂足為D.給出下列四個結(jié)論:①sinα=sinB;sinβ=sinC;sinB=cosC;sinα=cosβ.其中正確的結(jié)論有_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和C0,3).(1)求拋物線的解析式;(2)在拋物線的對稱軸上,是否存在點P,使PA+PC的值最。咳绻嬖,請求出點P的坐標(biāo),如果不存在,請說明理由;(3)設(shè)點M在拋物線的對稱軸上,當(dāng)△MAC是直角三角形時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某民俗村為了維護(hù)消費者利益,限定村內(nèi)所有商品的利潤率不得超過,村內(nèi)一商店以每件16元的價格購進(jìn)一批商品,該商品每件售價定為x元,每天可賣出件,每天銷售該商品所獲得的利潤為y元.

yx的函數(shù)關(guān)系式;

若每天銷售該商品要獲得280元的利潤,每件商品的售價應(yīng)定為多少元?

求商店每天銷售該商品可獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,正三角形和正方形內(nèi)接于同一個圓;如圖②,正方形和正五邊形內(nèi)接于同一個圓;如圖③,正五邊形和正六邊形內(nèi)接于同一個圓;;則對于圖①來說,BD可以看作是正_____邊形的邊長;若正n邊形和正(n+1)邊形內(nèi)接于同一個圓,連接與公共頂點相鄰?fù)瑐?cè)兩個不同正多邊形的頂點可以看做是_____邊形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中有兩點A(﹣24)、B2,4),若二次函數(shù)yax22ax3aa≠0)的圖象與線段AB只有一個交點,則( 。

A. a的值可以是 B. a的值可以是

C. a的值不可能是﹣1.2 D. a的值不可能是1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yax2+bx+ca≠0)的對稱軸為直線x=﹣1,圖象經(jīng)過B(﹣3,0)、C0,3)兩點,且與x軸交于點A

1)求二次函數(shù)yax2+bx+ca≠0)的表達(dá)式;

2)在拋物線的對稱軸上找一點M,使ACM周長最短,求出點M的坐標(biāo);

3)若點P為拋物線對稱軸上的一個動點,直接寫出使BPC為直角三角形時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:RtABC中,∠ACB90°,點EAB上一點,ACAE3,BC4,過點AAB的垂線交射線EC于點D,延長BCAD于點F

(1)CF的長;

(2)求∠D的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(4,2)B(2,6),C(0,4)是直角坐標(biāo)系平面上三點.

(1)ABC向右平移4個單位再向下平移1個單位,得到A1B1C1,畫出平移后的圖形;

(2)ABC內(nèi)部有一點P(a,b),則平移后它的對應(yīng)點P1的坐標(biāo)為__________;

(3)以原點O為位似中心,將ABC縮小為原來的一半,得到A2B2C2,請在所給的坐標(biāo)系中作出所有滿足條件的圖形.

查看答案和解析>>

同步練習(xí)冊答案