【題目】在平面直角坐標(biāo)系中有兩點A(﹣2,4)、B(2,4),若二次函數(shù)y=ax2﹣2ax﹣3a(a≠0)的圖象與線段AB只有一個交點,則( 。
A. a的值可以是 B. a的值可以是
C. a的值不可能是﹣1.2 D. a的值不可能是1
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于三角函數(shù)有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ;cos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβ;tan(α+β)=(1﹣tanαtanβ≠0),合理利用這些公式可以將一些角的三角函數(shù)值轉(zhuǎn)化為特殊角的三角函數(shù)來求值,如sin90°=sin(30°+60°)=sin30°cos60°+cos30°sin60°==1,利用上述公式計算下列三角函數(shù)①sin105°=,②tan105°=﹣2﹣,③sin15°=,④cos90°=0,其中正確的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標(biāo)為4.
(1)求k的值.
(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,點D是⊙O 上一點,⊙O的切線CB與AD的延長線交于點B,點F是直徑AC上一點,連接DF并延長交⊙O于點E,連接AE.
(1)求證:∠ABC=∠AED;
(2)連接BF,若AD=,AF=6,tan∠AED=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D,E,F分別是OA,OB,OC的中點,下面的說法中:①△ABC與△DEF是位似圖形;②△ABC與△DEF的相似比為1∶2;③△ABC與△DEF的周長之比為2∶1;④△ABC與△DEF的面積之比為4∶1.正確的是( )
A. ①②③ B. ①③④ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的對稱軸為直線x=﹣1,下列結(jié)論正確的有_____(填序號).
①若圖象過點(﹣3,y1)、(2,y2),則y1<y2;
②ac<0;
③2a﹣b=0;
④b2﹣4ac<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的弦,C是的中點,聯(lián)結(jié)OA,AC,如果∠OAB=20°,那么∠CAB的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)上部分點的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … |
| ﹣4 | ﹣4 | 0 | … |
(1)求該拋物線的表達(dá)式;
(2)已知點E(4, y)是該拋物線上的點,點E關(guān)于拋物線的對稱軸對稱的點為點F,求點E和點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓內(nèi)接四邊形ABCD的BA,CD的延長線交于P,AC,BD交于E,則圖中相似三角形有( )
A. 2對 B. 3對 C. 4對 D. 5對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com