精英家教網 > 初中數學 > 題目詳情

【題目】為了強化司機的交通安全意識,我市利用交通安全宣傳月對司機進行了交通安全知識問卷調查.關于酒駕設計了如下調查問卷:

克服酒駕﹣﹣你認為哪種方式最好?(單選)

A加大宣傳力度,增強司機的守法意識. B在汽車上張貼溫馨提示:“請勿酒駕”.

C司機上崗前簽“拒接酒駕”保證書. D加大檢查力度,嚴厲打擊酒駕.

E查出酒駕追究一同就餐人的連帶責任.

隨機抽取部分問卷,整理并制作了如下統(tǒng)計圖:

根據上述信息,解答下列問題:

(1)本次調查的樣本容量是多少?

(2)補全條形圖,并計算B選項所對應扇形圓心角的度數;

(3)若我市有3000名司機參與本次活動,則支持D選項的司機大約有多少人?

【答案】(1)樣本容量300 ;(2)補圖見解析,48°;(3)支持D選項的司機大約有800人.

【解析】試題分析:(1)用E小組的頻數除以該組所占的百分比即可求得樣本容量;

(2)用總人數乘以該組所占的百分比即可求得A組的人數,總數減去其他小組的頻數即可求得B小組的人數;

(3)總人數乘以支持D選項的人數占300人的比例即可;

試題解析:(1)樣本容量:69÷23%=300 ;

(2)A組人數為300×30%=90(人)

B組人數:300﹣(90+21+80+69)=40(人,)

補全條形圖人數為40 ,

圓心角度數為 360°× =48°;

(3)3000× =800(人),

答:支持D選項的司機大約有800人.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】去年春季,蔬菜種植場在15公頃的大棚地里分別種植了茄子和西紅柿,總費用是萬元其中,種植茄子和西紅柿每公頃的費用和每公頃獲利情況如表:

每公頃費用萬元

每公頃獲利萬元

茄子

西紅柿

請解答下列問題:

求出茄子和西紅柿的種植面積各為多少公頃?

種植場在這一季共獲利多少萬元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知P1x1y1),P2x2,y2),P3x3,y3)是反比例函數的圖象上的三點,且x10x2x3,則y1,y2,y3的大小關系是________.

【答案】

【解析】試題分析:∵函數y中,k=-10,

∴此函數的圖象的兩個分支位于二四象限,且在每一象限內,yx的增大而增大.

x10x2x3

∴點Ax1,y1)在第二象限,Bx2,y2)、Cx3y3)在第四象限,

y10,y2y30

y2y3y1

故答案為:y2y3y1

點睛:本題考查的是反比例函數圖象的性質,k0時,圖象位于一三象限,在每一個象限內yx的增大而減小,k0時,圖象位于二四象限,在每一個象限內,yx的增大而增大

型】填空
束】
14

【題目】如圖,直線y=kx(k<0)與雙曲線交于A(x1,y1),B(x2,y2)兩點,則3x1y2-5x2y1的值為 __________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解分式方程:

(1) (2)

【答案】(1) ;(2)x=

【解析】試題分析:(1)兩邊乘以(x-1)(2x+1)去分母,轉化為整式方程,然后解整式方程,檢驗后寫出分式方程的解即可;

(2)兩邊乘以(x+2)(x-2)去分母,轉化為整式方程,然后解整式方程,檢驗后寫出分式方程的解即可

試題解析:

解:(1)兩邊乘以(x-1)(2x+1)去分母得:2x+1=5(x-1),

解得:x=2,

x=2時,(x-1)(2x+1)≠0,

∴原分式方程的解為x=2;

(2)兩邊乘以(x+2)(x-2)去分母得:(x-2)2-3=(x+2)(x-2),

解得:x

x時,(x2)(x2)≠0

所以原分式方程的解為x

型】解答
束】
21

【題目】先化簡,再求值其中的值從不等式組的整數解中選取.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解學生課外閱讀的喜好,某校從八年級隨機抽取部分學生進行問卷調查,調查要求每人只選取一種喜歡的書籍,如果沒有喜歡的書籍,則作其它類統(tǒng)計。圖(1)與圖(2)是整理數據后繪制的兩幅不完整的統(tǒng)計圖。以下結論不正確的是( )

A. 由這兩個統(tǒng)計圖可知喜歡科普常識的學生有90人.

B. 若該年級共有1200名學生,則由這兩個統(tǒng)計圖可估計喜愛科普常識的學生約有360個.

C. 由這兩個統(tǒng)計圖不能確定喜歡小說的人數.

D. 在扇形統(tǒng)計圖中,漫畫所在扇形的圓心角為72°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,D為AB上一點,E為BC上一點,且AC=CD=BD=BE,∠A=50°,則∠CDE的度數為( 。
A.50°
B.51°
C.51.5°
D.52.5°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AMBN,A=80°,點P是射線AM上動點(與A不重合),BC、BD分別平分∠ABP和∠PBN,交射線AMC、D.

(1)求∠CBD的度數;

(2)當點P運動時,那么∠APB:ADB的度數比值是否隨之發(fā)生變化?若不變,請求出這個比值;若變化,請找出變化規(guī)律;

(3)當點P運動到使∠ACB=ABD時,求∠ABC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=﹣ x2 x+2與x軸交于A、B兩點,與y軸交于點C

(1)求點A,B,C的坐標;
(2)點E是此拋物線上的點,點F是其對稱軸上的點,求以A,B,E,F為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,若∠1=100°,∠4=80°,則__________,理由是________________;若∠3=70°,則∠2=_______時,也可推出AB∥CD.

查看答案和解析>>

同步練習冊答案