【題目】如圖,已知拋物線y=﹣ x2﹣ x+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C
(1)求點(diǎn)A,B,C的坐標(biāo);
(2)點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對(duì)稱軸上的點(diǎn),求以A,B,E,F(xiàn)為頂點(diǎn)的平行四邊形的面積;
(3)此拋物線的對(duì)稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】
(1)
解:令y=0得﹣ x2﹣ x+2=0,
∴x2+2x﹣8=0,
x=﹣4或2,
∴點(diǎn)A坐標(biāo)(2,0),點(diǎn)B坐標(biāo)(﹣4,0),
令x=0,得y=2,
∴點(diǎn)C坐標(biāo)(0,2)
(2)
解:由圖象可知AB只能為平行四邊形的邊,
∵AB=EF=6,對(duì)稱軸x=﹣1,
∴點(diǎn)E的橫坐標(biāo)為﹣7或5,
∴點(diǎn)E坐標(biāo)(﹣7,﹣ )或(5,﹣ ),此時(shí)點(diǎn)F(﹣1,﹣ ),∴以A,B,E,F(xiàn)為頂點(diǎn)的平行四邊形的面積=6× =
(3)
如圖所示,
①當(dāng)C為頂點(diǎn)時(shí),CM1=CA,CM2=CA,作M1N⊥OC于N,
在RT△CM1N中,CN= = ,
∴點(diǎn)M1坐標(biāo)(﹣1,2+ ),點(diǎn)M2坐標(biāo)(﹣1,2﹣ ).
②當(dāng)M3為頂點(diǎn)時(shí),∵直線AC解析式為y=﹣x+1,
線段AC的垂直平分線為y=x,
∴點(diǎn)M3坐標(biāo)為(﹣1,﹣1).
③當(dāng)點(diǎn)A為頂點(diǎn)的等腰三角形不存在.
綜上所述點(diǎn)M坐標(biāo)為(﹣1,﹣1)或(﹣1,2+ )或(﹣1.2﹣ ).
【解析】(1)分別令y=0,x=0,即可解決問題.(2)由圖象可知AB只能為平行四邊形的邊,易知點(diǎn)E坐標(biāo)(﹣7,﹣ )或(5,﹣ ),由此不難解決問題.(3)分A、C、M為頂點(diǎn)三種情形討論,分別求解即可解決問題.本題考查二次函數(shù)綜合題、平行四邊形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是熟練掌握拋物線與坐標(biāo)軸交點(diǎn)的求法,學(xué)會(huì)分類討論的思想,屬于中考?jí)狠S題.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的概念和平行四邊形的判定與性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;若一直線過平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在∠O的一邊OA上.按要求畫圖并填空:
(1)過點(diǎn)A畫直線AB⊥OA,與∠O的另一邊相交于點(diǎn)B;過點(diǎn)A畫OB的垂線段AC,垂足為點(diǎn)C;過點(diǎn)C畫直線CD∥OA,交直線AB于點(diǎn)D。
(2)∠CDB=________°;
(3)如果OA=8,AB=6,OB=10,則點(diǎn)A到直線OB的距離為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了強(qiáng)化司機(jī)的交通安全意識(shí),我市利用交通安全宣傳月對(duì)司機(jī)進(jìn)行了交通安全知識(shí)問卷調(diào)查.關(guān)于酒駕設(shè)計(jì)了如下調(diào)查問卷:
克服酒駕﹣﹣你認(rèn)為哪種方式最好?(單選) |
A加大宣傳力度,增強(qiáng)司機(jī)的守法意識(shí). B在汽車上張貼溫馨提示:“請(qǐng)勿酒駕”. C司機(jī)上崗前簽“拒接酒駕”保證書. D加大檢查力度,嚴(yán)厲打擊酒駕. E查出酒駕追究一同就餐人的連帶責(zé)任. |
隨機(jī)抽取部分問卷,整理并制作了如下統(tǒng)計(jì)圖:
根據(jù)上述信息,解答下列問題:
(1)本次調(diào)查的樣本容量是多少?
(2)補(bǔ)全條形圖,并計(jì)算B選項(xiàng)所對(duì)應(yīng)扇形圓心角的度數(shù);
(3)若我市有3000名司機(jī)參與本次活動(dòng),則支持D選項(xiàng)的司機(jī)大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC,∠A、∠B、∠C之和為多少?為什么?
解:∠A+∠B+∠C=180°
理由:作∠ACD=∠A,并延長(zhǎng)BC到E
∵∠ACD=∠ (已作)
AB∥CD( )
∴∠B= ( )
而∠ACB+∠ACD+∠DCE=180°
∴∠ACB+ + =180°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某運(yùn)動(dòng)員在一場(chǎng)籃球比賽中的技術(shù)統(tǒng)計(jì)如表所示:
技術(shù) | 上場(chǎng)時(shí)間(分鐘) | 出手投籃(次) | 投中 | 罰球得分 | 籃板 | 助攻(次) | 個(gè)人總得分 |
數(shù)據(jù) | 46 | 66 | 22 | 10 | 11 | 8 | 60 |
注:表中出手投籃次數(shù)和投中次數(shù)均不包括罰球.
根據(jù)以上信息,求本場(chǎng)比賽中該運(yùn)動(dòng)員投中2分球和3分球各幾個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A.不可能事件發(fā)生的概率為0
B.隨機(jī)事件發(fā)生的概率為
C.概率很小的事件不可能發(fā)生
D.投擲一枚質(zhì)地均勻的硬幣100次,正面朝上的次數(shù)一定為50次
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=2x+4
(1)在如圖所示的平面直角坐標(biāo)系中,畫出函數(shù)的圖象;
2)求圖象與x軸的交點(diǎn)A的坐標(biāo),與y軸交點(diǎn)B的坐標(biāo);
(3)在(2)的條件下,求出△AOB的面積;
(4)利用圖象直接寫出:當(dāng)y<0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+bx+c(a≠0)經(jīng)過原點(diǎn),頂點(diǎn)為A(h,k)(h≠0).
(1)當(dāng)h=1,k=2時(shí),求拋物線的解析式;
(2)若拋物線y=tx2(t≠0)也經(jīng)過A點(diǎn),求a與t之間的關(guān)系式;
(3)當(dāng)點(diǎn)A在拋物線y=x2﹣x上,且﹣2≤h<1時(shí),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在ABCD中,∠ABC=60°,且AB=BC,∠MAN=60°.請(qǐng)?zhí)剿鰾M,DN與AB的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com