【題目】△ABC中,∠ACB=90°,∠BAC=30°,點C為等邊△DEF的邊DE的中點.
(1)如圖1,當DE與BC在同一條直線上時,已知,求的值;
(2)如圖2,當DE與AC在同一條直線上時,分別連接AF,BD,試判斷BD和AF的位置關系并說明理由;
(3)如圖3,當DE與△ABC的邊均不在一條直線上時,分別連接AF,BD,求證:∠FAC=∠CBD.
【答案】(1)1 (2)BD⊥AF (3)證明見解析
【解析】
(1)根據平行線的判定和平行線線段成比例解答即可;
(2)連接CF,延長BD交AF于G,利用相似三角形的判定和性質解答即可;
(3)連接CF,根據相似三角形的判定和性質解答即可.
(1)∵點C為等邊△DEF的邊DE的中點,
∴∠EFC=∠CFD=30°,
∵∠BAC=30°,
∴∠CFD=∠BAC,
∴DF∥AB,
∵,
∴,
∵ED=2CD,
∴;
(2)連接CF,延長BD交AF于G,則BD⊥AF于G,如圖:
∵,∠ACF=∠BCD=90°,
∴△ACF∽△BCD,
∴∠FAC=∠CBD,
∵∠BDC+∠DBC=90°,
∴∠ADG+∠DAG=90°,
即BD⊥AF于G;
(3)連接CF,如圖:
∵點C為等邊△DEF的邊DE的中點,
∴FC⊥DE,
∴∠FCD=90°,
∵∠FCA+∠ACD=∠BCD+∠ACD=90°,
∴∠FCA=∠BCD,
∵,
∴△ACF∽△BCD,
∴∠FAC=∠CBD.
科目:初中數學 來源: 題型:
【題目】在下列的網格圖中.每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉中心,沿順時針方向旋轉90°后的圖形△AB1C1;
(2)若點B的坐標為(-3,5),試在圖中畫出直角坐標系,并標出A、C兩點的坐標;
(3)根據(2)中的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并標出B2、C2兩點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系 xOy 中,拋物線 y=ax2﹣4ax+3a﹣2(a≠0)與 x軸交于 A,B 兩(點 A 在點 B 左側).
(1)當拋物線過原點時,求實數 a 的值;
(2)①求拋物線的對稱軸;
②求拋物線的頂點的縱坐標(用含 a 的代數式表示);
(3)當 AB≤4 時,求實數 a 的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=(x-2)2+m的圖象與y軸交于點C,點B是點C關于該二次函數圖象的對稱軸對稱的點.已知一次函數y=kx+b的圖象經過該二次函數圖象上的點A(1,0)及點B.
(1)求m的值與一次函數的解析式;
(2)拋物線上是否存在一點P,使S△ABP=S△ABC?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是圓O的直徑.CD是⊙O的一條弦.且CD⊥AB于點E.
(1)若∠B=32°,求∠OCE的大;
(2)若CD=4,OE=1,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了美化綠化校園,計劃購買甲,乙兩種花木共100棵綠化操場,其中甲種花木每棵60元,乙種花木每棵80元.
(1)若購買甲,乙兩種花木剛好用去7200元,則購買了甲,乙兩種花木各多少棵?
(2)如果購買乙種花木的數量不少于甲種花木的數量,請設計一種購買方案使所需費用最低,并求出該購買方案所需總費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點D是AB的中點,點F是BC延長線上一點,連接DF,交AC于點E,連接BE,∠A=∠ABE
(1)求證:ED平分∠AEB;
(2)若AB=AC,∠A=38°,求∠F的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數的圖像與軸、軸分別交于點、,以為邊在第二象限內作等邊.
(1)求點的坐標;
(2)在第二象限內有一點,使,求點的坐標;
(3)將沿著直線翻折,點落在點處;再將繞點順時針方向旋轉15°,點落在點處,過點作軸于.求的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用配方法解下列方程時,配方有錯誤的是( )
A.x2﹣2x﹣99=0化為(x﹣1)2=100
B.x2+8x+9=0化為(x+4)2=25
C.2t2﹣7t﹣4=0化為(t﹣)2=
D.3x2﹣4x﹣2=0化為(x﹣)2=
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com