【題目】如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點C,點B是點C關于該二次函數(shù)圖象的對稱軸對稱的點.已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點A(1,0)及點B.
(1)求m的值與一次函數(shù)的解析式;
(2)拋物線上是否存在一點P,使S△ABP=S△ABC?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
【答案】(1)m=-1,y=x-1;(2)存在;P(5,8).
【解析】
(1)先將點A(1,0)代入y=(x-2)2+m求出m的值,根據(jù)點的對稱性確定B點坐標,然后根據(jù)待定系數(shù)法求出一次函數(shù)解析式;
(2)假設存在點P,設點P(a,a2-4a+3),根據(jù)三角形ABP面積為三角形ABC面積,由兩三角形都以AB為底邊,得到C到直線AB的距離為P到直線AB距離相等,利用點到直線的距離公式列出關于a的方程,求出方程的解得到a的值,即可確定出滿足題意P的坐標.
(1)由題意,得解得
∴.當時,
∴點C的坐標為(0,3).
∵點B與點C關于直線x=2對稱,
∴點B的坐標為(4,3).將點A(1,0),B(4,3)代入,得
解得
∴
(2)存在.設CP∥AB交拋物線于點P.
∵可設直線CP的解析式為.把(0,3)代入,得
聯(lián)立方程,解得
點P的坐標為(5,8)
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的方格紙中,△ABC的頂點都在小正方形的頂點上,以小正方形互相垂直的兩邊所在直線建立直角坐標系.
(1)作出△ABC關于y軸對稱的△A1B1C1,其中點A,B,C分別和點A1,B1,C1對應;
(2)平移△ABC,使得點A在x軸上,點B在y軸上,平移后的三角形記為△A2B2C2,作出平移后的△A2B2C2,其中點A,B,C分別和點A2,B2,C2對應;
(3)直接寫出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】舉重比賽的總成績是選手的挺舉與抓舉兩項成績之和,若其中一項三次挑戰(zhàn)失敗,則該項成績?yōu)?0,甲、乙是同一重量級別的舉重選手,他們近三年六次重要比賽的成績?nèi)缦拢▎挝唬汗铮?/span>
如果你是教練,要選派一名選手參加國際比賽,那么你會選擇_____(填“甲” 或“乙”),理由是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象所示,對稱軸為x=1,給出下列結論:①abc>0;②當x>2時,y>0;③3a+c>0;④3a+b>0.其中正確的結論有( )
A. ①② B. ①④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,點O是AC上的一個動點,過點O作直線MN∥BC,設MN交∠BCA的平分線于E,交∠BCA的外角平分線于F.
(1)請猜測OE與OF的大小關系,并說明你的理由;
(2)點O運動到何處時,四邊形AECF是矩形?寫出推理過程;
(3)點O運動到何處且△ABC滿足什么條件時,四邊形AECF是正方形?(寫出結論即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋中裝有2個紅球(記為紅1、紅2),1個白球、1個黑球,這些球除顏色外都相同,將球攪勻.
(1)從中任意摸出1個球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出一個球,再從余下的3個球中任意摸出1個球,請用畫樹狀圖或列表法求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠ACB=90°,∠BAC=30°,點C為等邊△DEF的邊DE的中點.
(1)如圖1,當DE與BC在同一條直線上時,已知,求的值;
(2)如圖2,當DE與AC在同一條直線上時,分別連接AF,BD,試判斷BD和AF的位置關系并說明理由;
(3)如圖3,當DE與△ABC的邊均不在一條直線上時,分別連接AF,BD,求證:∠FAC=∠CBD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y=(m為常數(shù))的圖象在一,三象限.
(1)求m的取值范圍;
(2)如圖,若該反比例函數(shù)的圖象經(jīng)過ABOD的頂點D,點A、B的坐標分別為(0,4),(﹣3,0).
①求出函數(shù)解析式;
②設點P是該反比例函數(shù)圖象上的一點,若OD=OP,則P點的坐標為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com