【題目】如圖,已知直線AB∥CD,F(xiàn)H平分∠EFD,F(xiàn)G⊥FH,∠AEF=62°,則∠GFC=_____度.
【答案】59.
【解析】
先根據(jù)平行線的性質(zhì)得出∠EFC與∠EFD的度數(shù),再根據(jù)FH平分∠EFD得出∠EFH的度數(shù),再根據(jù)FG⊥FH可得出∠GFE的度數(shù),根據(jù)∠GFC=∠CFE﹣∠GFE即可得出結(jié)論.
∵AB∥CD,∠AEF=62°,
∴∠EFD=∠AEF=62°,∠CFE=180°﹣∠AEF=180°﹣62°=118°;
∵FH平分∠EFD,
∴∠EFH=∠EFD=×62°=31°,
又∵FG⊥FH,
∴∠GFE=90°﹣∠EFH=90°﹣31°=59°,
∴∠GFC=∠CFE﹣∠GFE=118°﹣59°=59°.
故答案為:59.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店用4400元購進(jìn)A,B兩種新式服裝,按標(biāo)價售出后可獲得毛利潤2800元(毛利潤=售價﹣進(jìn)價),這兩種服裝的進(jìn)價,標(biāo)價如表所示.
類型價格 | A型 | B型 |
進(jìn)價(元/件) | 60 | 100 |
標(biāo)價(元/件) | 100 | 160 |
(1)請利用二元一次方程組求這兩種服裝各購進(jìn)的件數(shù);
(2)如果A種服裝按標(biāo)價的9折出售,B種服裝按標(biāo)價的8折出售,那么這批服裝全部售完后,服裝店比按標(biāo)價出售少收入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C分別在x軸上、y軸上,CB//OA,OA=8,若點(diǎn)B的坐標(biāo)為(a,b),且b=.
(1)直接寫出點(diǎn)A、B、C的坐標(biāo);
(2)若動點(diǎn)P從原點(diǎn)O出發(fā)沿x軸以每秒2個單位長度的速度向右運(yùn)動,當(dāng)直線PC把四邊形OABC分成面積相等的兩部分停止運(yùn)動,求P點(diǎn)運(yùn)動時間;
(3)在(2)的條件下,在y軸上是否存在一點(diǎn)Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)政府提出的“綠色發(fā)展·低碳出行”號召,某社區(qū)決定購置一批共享單車.經(jīng)市場調(diào)查得知,購買6輛男式單車與8輛女式單車費(fèi)用相同,購買5輛男式單車與4輛女式單車共需16 000元.
(1)求男式單車和女式單車的單價;
(2)該社區(qū)要求男式單車比女式單車多5輛,兩種單車至少需要22輛,購置兩種單車的費(fèi)用不超過50 000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),線段AB的兩個端點(diǎn)A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點(diǎn)C為線段AB的中點(diǎn),現(xiàn)將線段BA繞點(diǎn)B按順時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)D.
(1)如圖1,若該拋物線經(jīng)過原點(diǎn)O,且a=﹣ .
①求點(diǎn)D的坐標(biāo)及該拋物線的解析式;
②連結(jié)CD,問:在拋物線上是否存在點(diǎn)P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點(diǎn)P的坐標(biāo),若不存在,請說明理由;
(2)如圖2,若該拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)E(1,1),點(diǎn)Q在拋物線上,且滿足∠QOB與∠BCD互余.若符合條件的Q點(diǎn)的個數(shù)是4個,請直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完善下列解題步驟,并說明解題依據(jù).
如圖,已知,,求證:
證明:(已知),
且(_____________________),
(_____________________),
(_____)(______)(________________),
(______)(______________________),
又(已知),
(_______)
(___________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名工人同時加工同一種零件,現(xiàn)根據(jù)兩人7天產(chǎn)品中每天出現(xiàn)的次品數(shù)情況繪制成如下不完整的統(tǒng)計圖和表,依據(jù)圖、表信息,解答下列問題:
相關(guān)統(tǒng)計量表:
量數(shù) 人 | 眾數(shù) | 中位數(shù) | 平均數(shù) | 方差 |
甲 |
|
| 2 |
|
乙 | 1 | 1 | 1 |
次品數(shù)量統(tǒng)計表:
天數(shù) 人 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
甲 | 2 | 2 | 0 | 3 | 1 | 2 | 4 |
乙 | 1 | 0 | 2 | 1 | 1 | 0 |
|
(1)補(bǔ)全圖、表.
(2)判斷誰出現(xiàn)次品的波動小.
(3)估計乙加工該種零件30天出現(xiàn)次品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,MN是⊙O的切線,B為切點(diǎn),BC是⊙O的弦且∠CBN=45°,過C的直線與⊙O,MN分別交于A,D兩點(diǎn),過C作CE⊥BD于點(diǎn)E.、
(1)求證:CE是⊙O的切線;
(2)若∠D=30°,BD=4,求⊙O的半徑r.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn).過點(diǎn)A作AF∥BC交BE的延長線于點(diǎn)F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com