【題目】如圖,已知ACB中,∠ACB=90°,CEACB的中線,分別過點A、點CCEAB的平行線,交于點D

(1)求證:四邊形ADCE是菱形;

(2)若CE=4,且∠DAE=60°,求ACB的面積

【答案】(1)見解析;(2)

【解析】1)由AD//CE,CD//AE ,得四邊形AECD為平行四邊形,根據(jù)直角三角形斜邊上中線性質,得CE=AE,可知四邊形ADCE是菱形;(2)由(1)可知,當∠DAE=60°時,∠CAE=30°,可求AB,再根據(jù)三角函數(shù)求AC,BC,最后求面積.

(1)證明:∵AD//CE,CD//AE

∴四邊形AECD為平行四邊形

∵∠ACB=90°,CEACB的中線

CE=AE

∴四邊形ADCE是菱形

(2)解:∵CE=4,AE= CE=EB

AB=8,AE=4

∵四邊形ADCE是菱形,DAE=60°

∴∠CAE=30°

Rt△ABC中,∠ACB=90°,∠CAB=30°, AB=8

,

AC =

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果一條拋物線yax2bxca≠0)與x軸有兩個交點,那么以拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”,[a,b,c]稱為“拋物線系數(shù)”.

(1)任意拋物線都有“拋物線三角形”是______(填“真”或“假”)命題;

(2)若一條拋物線系數(shù)為[1,0,-2],則其“拋物線三角形”的面積為________;

(3)若一條拋物線系數(shù)為[-1,2b0],其“拋物線三角形”是個直角三角形,求該拋物線的解析式;

(4)在(3)的前提下,該拋物線的頂點為A,與x軸交于O,B兩點,在拋物線上是否存在一點P,過PPQx軸于點Q,使得△BPQOAB,如果存在,求出P點坐標,如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為落實綠水青山就是金山銀山的發(fā)展理念,某市政部門招標一工程隊負責在山腳下修建一座水庫的土方施工任務該工程隊有兩種型號的挖掘機,已知3型和5型挖掘機同時施工一小時挖土165立方米;4型和7型挖掘機同時施工一小時挖土225立方米每臺型挖掘機一小時的施工費用為300,每臺型挖掘機一小時的施工費用為180

(1)分別求每臺, 型挖掘機一小時挖土多少立方米?

(2)若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960問施工時有哪幾種調配方案,并指出哪種調配方案的施工費用最低,最低費用是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCDADBC,E.FBD上兩點,且BFDE,則圖中共有_____對全等三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關聯(lián)方程

1)在方程①3x1=0,x(3x+1)=7中,不等式組的關聯(lián)方程是 (填序號)

2)若不等式組的一個關聯(lián)方程的解是整數(shù),則這個關聯(lián)方程可以是 ;(寫出一個即可)

3)若方程103x=2x,1+x=2(x1)都是關于x的不等式組的關聯(lián)方程,求出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(9分)如圖,直線l經(jīng)過點A(1,6)和點B(﹣3,﹣2).

(1)求直線l的解析式,直線與坐標軸的交點坐標;

(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明從右邊的二次函數(shù)y=ax2+bx+c圖象中,觀察得出了下面的五條信息:①a<0,②c=0,③函數(shù)的最小值為-3,④當x<0時,y>0,⑤當0<x1<x2<2時,y1>y2 , (6)對稱軸是直線x=2.你認為其中正確的個數(shù)為( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:

(1)甲,乙兩組工作一天,商店各應付多少錢?

(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?

(3)若裝修完后,商店每天可贏利200元,你認為如何安排施工更有利于商店?請你幫助商店決策.(可用(1)(2)問的條件及結論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校組織340名師生進行長途考察活動,帶有行李170件,計劃租用甲、乙兩種型號的汽車共10輛.經(jīng)了解,甲車每輛最多能載40人和16件行李,乙車每輛最多能載30人和20件行李.

1)請你幫助學校設計所有可行的租車方案.

2)如果甲車的租金為每輛2 000元,乙車的租金為每輛1 800元,問哪種可行方案使租車費用最省?

查看答案和解析>>

同步練習冊答案