【題目】如圖四邊形ABCD,ABDC,B90°,FDC上一點(diǎn)FCAB,EAD上一點(diǎn),ECAF于點(diǎn)G.

(1)求證:四邊形ABCF是矩形;

(2)EDEC,求證:EAEG.

【答案】(1)證明見解析;(2)證明見解析.

【解析】試題分析:(1)先證明四邊形ABCF是平行四邊形.再由∠B=90°,即可得出四邊形ABCF是矩形.

(2)由等腰三角形的性質(zhì)得出∠D=∠ECD,證出∠EAG=∠EGA,即可得出結(jié)論.

試題解析:(1)證明:∵AB∥DC,F(xiàn)C=AB,

∴四邊形ABCF是平行四邊形.

∵∠B=90°,

∴四邊形ABCF是矩形.

(2)證明:由(1)可得,∠AFC=90°,

∴∠DAF=90°-∠D,∠CGF=90°-∠ECD.

∵ED=EC,

∴∠D=∠ECD.

∴∠DAF=∠CGF.

∵∠EGA=∠CGF,

∴∠EAG=∠EGA.

∴EA=EG.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在正方形ABCD中,點(diǎn)E在邊CD上,AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P.

(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中四對(duì)線段,使每對(duì)中較長線段與較短線段長度的差等于PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,射線分別和直線交于點(diǎn),射線分別和直線交于點(diǎn),點(diǎn)在射線上運(yùn)動(dòng)(點(diǎn)與三點(diǎn)不重合),設(shè),,

(1)如果點(diǎn)兩點(diǎn)之間運(yùn)動(dòng)時(shí),之間有何數(shù)量關(guān)系?請(qǐng)說明理由;

(2)如果點(diǎn)兩點(diǎn)之外運(yùn)動(dòng)時(shí),之間有何數(shù)量關(guān)系?(只需寫出結(jié)論,不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線ABCD

(1)如圖1,點(diǎn)E在直線BD的左側(cè),猜想∠ABE、CDE、BED的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)如圖2,點(diǎn)E在直線BD的左側(cè),BF、DF分別平分∠ABE、CDE,猜想∠BFD和∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)如圖3,點(diǎn)E在直線BD的右側(cè),BF、DF分別平分∠ABE、CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關(guān)系的猜想是否仍成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)寫出你的猜想,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E,F(xiàn)分別是OA,OC的中點(diǎn),連接BE,DF

(1)根據(jù)題意,補(bǔ)全原形;
(2)求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五月初,我市多地遭遇了持續(xù)強(qiáng)降雨的惡劣天氣,造成部分地區(qū)出現(xiàn)嚴(yán)重洪澇災(zāi)害,某愛心組織緊急籌集了部分資金,計(jì)劃購買甲、乙兩種救災(zāi)物品共2000件送往災(zāi)區(qū),已知每件甲種物品的價(jià)格比每件乙種物品的價(jià)格貴10元,用350元購買甲種物品的件數(shù)恰好與用300元購買乙種物品的件數(shù)相同
(1)求甲、乙兩種救災(zāi)物品每件的價(jià)格各是多少元?
(2)經(jīng)調(diào)查,災(zāi)區(qū)對(duì)乙種物品件數(shù)的需求量是甲種物品件數(shù)的3倍,若該愛心組織按照此需求的比例購買這2000件物品,需籌集資金多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 ,并求其整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從友誼體育用品商店一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同、每個(gè)籃球的價(jià)格相同),若購買3個(gè)籃球和2個(gè)足球共需420元;購買2個(gè)籃球和4個(gè)足球共需440元.
(1)購買一個(gè)籃球、一個(gè)足球各需多少元?
(2)根據(jù)該中學(xué)的實(shí)際情況,需要從該體育用品商店一次性購買足球和籃球共20個(gè).要求購買籃球數(shù)不少于足球數(shù)的2倍,總費(fèi)用不超過1840元,那么這所中學(xué)有哪幾種購買方案?哪種方案所需費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)AB為定點(diǎn),定直線l//AB,Pl上一動(dòng)點(diǎn).點(diǎn)M,N分別為PA,PB的中點(diǎn),對(duì)于下列各值:

線段MN的長;

②△PAB的周長;

③△PMN的面積;

直線MNAB之間的距離;

⑤∠APB的大。

其中會(huì)隨點(diǎn)P的移動(dòng)而變化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案