【題目】已知:如圖,在正方形ABCD中,點(diǎn)E在邊CD上,AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P.

(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中四對(duì)線段,使每對(duì)中較長(zhǎng)線段與較短線段長(zhǎng)度的差等于PQ的長(zhǎng).

【答案】
(1)解:∵正方形ABCD

∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°

∵DP⊥AQ

∴∠ADP+∠DAP=90°

∴∠BAQ=∠ADP

∵AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P

∴∠AQB=∠DPA=90°

∴△AQB≌△DPA(AAS)

∴AP=BQ


(2)解:①AQ﹣AP=PQ

②AQ﹣BQ=PQ

③DP﹣AP=PQ

④DP﹣BQ=PQ


【解析】(1)根據(jù)正方形的性質(zhì)得出AD=BA,∠BAQ=∠ADP,再根據(jù)已知條件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出結(jié)論;(2)根據(jù)AQ﹣AP=PQ和全等三角形的對(duì)應(yīng)邊相等進(jìn)行判斷分析.本題主要考查了正方形以及全等三角形,解決問題的關(guān)鍵是掌握:正方形的四條邊相等,四個(gè)角都是直角.解題時(shí)需要運(yùn)用:有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等,以及全等三角形的對(duì)應(yīng)邊相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,將一塊直角三角板的直角頂點(diǎn)放在O(:∠DOE=90°).

(1)如圖①,若直角三角板DOE的一邊OD放在射線OB,∠BOC=60°,∠COE的度數(shù)

(2)如圖②,將三板DOEO逆時(shí)針轉(zhuǎn)動(dòng)到某個(gè)位置時(shí),若恰好滿足5∠COD=∠AOE,∠BOC=60°,∠BOD的度數(shù);

(3)如圖③,將直角三角板DOE繞點(diǎn)O逆時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置OE恰好平分∠AOC,請(qǐng)說明OD所在射線是∠BOC的平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點(diǎn),且AE=CF,直線EF分別交BA的延長(zhǎng)線、DC的延長(zhǎng)線于點(diǎn)G,H,交BD于點(diǎn)O.

(1)求證:△ABE≌△CDF;

(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子中裝有黑、白小球各兩個(gè),這些小球除顏色外無其他差別,從袋子中隨機(jī)摸出一個(gè)小球后,放回并搖勻,再隨機(jī)摸出一個(gè)小球,則兩次摸出的小球都是白球的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡(jiǎn),再求代數(shù)式( )÷ 的值,其中a=2sin60°+tan45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了改善住房條件,小亮的父母考察了某小區(qū)的兩套樓房,套樓房在層樓,套樓房在層樓,套樓房的面積比套樓房的面積大24平方米,兩套樓房的房?jī)r(jià)相同,第3層樓和5層樓的房?jī)r(jià)分別是平均價(jià)的1.1倍和0.9倍.為了計(jì)算兩套樓房的面積,小亮設(shè)套樓房的面積為平方米,套樓房的面積為平方米,根據(jù)以上信息列出了下列方程組.其中正確的是( ).

A B

C D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+=1+2.善于思考的小明進(jìn)行了以下探索:

設(shè)a+b=m+n2(其中ab、m、n均為整數(shù)),則有a+b=m2+2n2+2mn

a=m2+2n2b=2mn.這樣小明就找到了一種把類似a+b的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問題:

1當(dāng)ab、m、n均為正整數(shù)時(shí),若a+b=m+n)2,用含m、n的式子分別表示a、b,得:a= ,b= ;

2利用探索的結(jié)論,找一組正整數(shù)a、bm、n a、b都不超過20

填空:   +  =   +   2;

3)若a+6=(m+n)2,且a、m、n均為正整數(shù),求a的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校住校生宿舍有大小兩種寢室若干間,據(jù)統(tǒng)計(jì)該校高一年級(jí)男生740人,使用了55間大寢室和50間小寢室,正好住滿;女生730人,使用了大寢室50間和小寢室55間,也正好住滿.求該校的大小寢室每間各住多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD,ABDC,B90°,FDC上一點(diǎn),FCAB,EAD上一點(diǎn),ECAF于點(diǎn)G.

(1)求證:四邊形ABCF是矩形;

(2)EDEC求證:EAEG.

查看答案和解析>>

同步練習(xí)冊(cè)答案