【題目】某汽車租憑公司要購買轎車和面包車共輛,其中轎車最少要購買輛,轎車每輛萬元,購頭面包車每輛萬元,公司可投入的購車資金不超過萬元.
(1)符合公司要求的購買方案有幾種?請說明理由;
(2)如果每輛轎車日租金為元,每輛面包車日租金為元,假設新購買的這輛汽車每日都可以全部租出,公司希望輛汽車的日租金最高,那么應該選擇以上的哪種購買方案?且日租金最高為多少元?
【答案】(1)三種,理由見解析;(2)購買5輛轎車,5輛面包車時,日租金最高為1550元.
【解析】
(1)本題首先根據(jù)題中的不等關系轎車最少要購買3輛及公司可投入的購車資金不超過55萬元,列出不等式組,進而求出x的取值范圍,即可確定符合公司要求的購買方案;
(2)本題先由題意求出日租金總額和轎車數(shù)量之間的函數(shù)關系,再根據(jù)一次函數(shù)的增減性求出使日租金最大的方案,進而得出具體的日租金.
解:(1)設購轎車x輛,
由已知得x≥3且7x+4(10-x)≤55,
∴解得3≤x≤5,
又因為x為正整數(shù),
∴x=3、4、5,
∴符合題意的購買方案有三種;
(2)可設日租金總額為W,
則W=200x+110(10-x)=90x+1100.
∵90>0,
∴W隨x的增大而增大,
∴x取5時,W最大=1550元,
∴可知購買5輛轎車,5輛面包車時,日租金最高為1550元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是⊙O的內接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經(jīng)過點C,且∠ACE+∠AFO=180°.
(1)求證:EM是⊙O的切線;
(2)若∠A=∠E,BC=,求陰影部分的面積.(結果保留和根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,,,,,點P從點B出發(fā),沿線段BA,向點A以的速度勻速運動;點Q從點D出發(fā),沿線段DC向點C以的速度勻速運動,已知兩點同時出發(fā),當一個點到達終點時,另一點也停止運動,設運動時間為.
(1)連結P、Q兩點,則線段PQ長的取值范圍是________;
(2)當cm時,求t的值;
(3)若在線段CD上有一點E,cm,連結AC和PE.請問是否存在某一時刻使得AC平分PE?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=2x2+bx+c與直線y=﹣1只有一個公共點,且經(jīng)過A(m﹣1,n)和B(m+3,n),過點A,B分別作x軸的垂線,垂足記為M,N,則四邊形AMNB的周長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家圖文廣告公司制作的宣傳畫板頗受商家歡迎,這種畫板的厚度忽略不計,形狀均為正方形,邊長在10~30dm之間.每張畫板的成本價(單位:元)與它的面積(單位:dm2)成正比例,每張畫板的出售價(單位:元)由基礎價和浮動價兩部分組成,其中基礎價與畫板的大小無關,是固定不變的.浮動價與畫板的邊長成正比例.在營銷過程中得到了表格中的數(shù)據(jù).
畫板的邊長(dm) | 10 | 20 |
出售價(元/張) | 160 | 220 |
(1)求一張畫板的出售價與邊長之間滿足的函數(shù)關系式;
(2)已知出售一張邊長為30dm的畫板,獲得的利潤為130元(利潤=出售價-成本價),
①求一張畫板的利潤與邊長之間滿足的函數(shù)關系式;
②當邊長為多少時,出售一張畫板所獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程.
(1)如果該方程有兩個不相等的實數(shù)根,求m的取值范圍;
(2)在(1)的條件下,當關于x的拋物線與x軸交點的橫坐標都是整數(shù),且時,求m的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知矩形ABCD,AB=6,AD=8,將矩形ABCD繞點A順時針旋轉θ(0°<θ<360°)得到矩形AEFG,當θ=_____°時,GC=GB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個說法:
①,②,③,④.
其中說法正確的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著移動計算技術和無線網(wǎng)絡的快速發(fā)展,移動學習方式越來越引起人們的關注,某校計劃將這種學習方式應用到教育學中,從全校1500名學生中隨機抽取了部分學生,對其家庭中擁有的移動設備的情況進行調查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關信息,解答下列問題:
(1)本次接受隨機抽樣調查的學生人數(shù)為 ,圖①中m的值為 ;
(2)求本次調查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計該校1500名學生家庭中擁有3臺移動設備的學生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com