【題目】一家圖文廣告公司制作的宣傳畫板頗受商家歡迎,這種畫板的厚度忽略不計(jì),形狀均為正方形,邊長(zhǎng)在10~30dm之間.每張畫板的成本價(jià)(單位:元)與它的面積(單位:dm2)成正比例,每張畫板的出售價(jià)(單位:元)由基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,其中基礎(chǔ)價(jià)與畫板的大小無(wú)關(guān),是固定不變的.浮動(dòng)價(jià)與畫板的邊長(zhǎng)成正比例.在營(yíng)銷過(guò)程中得到了表格中的數(shù)據(jù).
畫板的邊長(zhǎng)(dm) | 10 | 20 |
出售價(jià)(元/張) | 160 | 220 |
(1)求一張畫板的出售價(jià)與邊長(zhǎng)之間滿足的函數(shù)關(guān)系式;
(2)已知出售一張邊長(zhǎng)為30dm的畫板,獲得的利潤(rùn)為130元(利潤(rùn)=出售價(jià)-成本價(jià)),
①求一張畫板的利潤(rùn)與邊長(zhǎng)之間滿足的函數(shù)關(guān)系式;
②當(dāng)邊長(zhǎng)為多少時(shí),出售一張畫板所獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
【答案】(1)滿足函數(shù)關(guān)系式y=6x+100;(2)①W=-x2+6x+100;②正方形畫板的邊長(zhǎng)為18dm時(shí),可獲最大利潤(rùn)154元.
【解析】
試題(1)每張畫板的成本價(jià)與它的面積成正比例,可設(shè)其解析式為y成本價(jià)=ax2,每張畫板的出售價(jià)由基礎(chǔ)價(jià)和浮動(dòng)價(jià)兩部分組成,其中基礎(chǔ)價(jià)與畫板的大小無(wú)關(guān),是固定不變的.浮動(dòng)價(jià)與畫板的邊長(zhǎng)成正比例.可設(shè)y出售價(jià)=kx+b.把表中數(shù)據(jù)代入即可求出結(jié)論;
(2)由y利潤(rùn)=y出售價(jià)-y成本價(jià),可得出二次函數(shù),求出其最大值即可.
試題解析:(1)設(shè)正方形畫板的邊長(zhǎng)為xdm,出售價(jià)為每張y元,且y=kx+b(k≠0) (1分)
由表格中的數(shù)據(jù)可得,,解得
從而一張畫板的出售價(jià)y與邊長(zhǎng)x之間滿足函數(shù)關(guān)系式y=6x+100
(2)設(shè)每張畫板的成本價(jià)為ax2,利潤(rùn)W=6x+100-ax2
當(dāng)x=30時(shí),W=130,180+100-900a=130,得a=
一張畫板的利潤(rùn)W與邊長(zhǎng)x之間滿足函數(shù)關(guān)系式W=-x2+6x+100
由W=-16(x-18)2+154,知當(dāng)x=18時(shí),W有最大值,W最大=154
因此當(dāng)正方形畫板的邊長(zhǎng)為18dm時(shí),可獲最大利潤(rùn)154元.
考點(diǎn): 1.一次函數(shù)表達(dá)式;2.二次函數(shù)表達(dá)式;3.二次函數(shù)的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,長(zhǎng)方體的長(zhǎng)為4cm,寬為3cm,高為12cm.求該長(zhǎng)方體中能放入木棒的最大長(zhǎng)度;
(2)如圖2,長(zhǎng)方體的長(zhǎng)為4cm,寬為3cm,高為12cm.現(xiàn)有一只螞蟻從點(diǎn)A處沿長(zhǎng)方體的表面爬到點(diǎn)G處,求它爬行的最短路程.
(3)若將題中的長(zhǎng)方體換成透明圓柱形容器(容器厚度忽略不計(jì))的高為12cm,底面周長(zhǎng)為10cm,在容器內(nèi)壁離底部3cm的點(diǎn)B處有一飯粒,此時(shí)一只螞蟻正好在容器外壁且離容器上沿3cm的點(diǎn)A處.求螞蟻吃到飯粒需要爬行的最短路程是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y=(k為常數(shù),k≠1).
(1)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;
(2)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(3)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)A(x1、x2)、B(x2、y2),當(dāng)y1>y2時(shí),試比較x1與x2的大。
(4)若在其圖象上任取一點(diǎn),向x軸和y軸作垂線,若所得矩形面積為6,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD中,∠B=60°,點(diǎn)E,F分別是BC,CD上的兩個(gè)動(dòng)點(diǎn),且始終保持∠AEF=60°.
(1)試判斷△AEF的形狀并說(shuō)明理由;
(2)若菱形的邊長(zhǎng)為2,求△ECF周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知二次函數(shù)(a、b、c為常數(shù),a≠0)的圖象過(guò)點(diǎn)O(0,0)和點(diǎn)A(4,0),函數(shù)圖象最低點(diǎn)M的縱坐標(biāo)為,直線l的解析式為y=x.
(1)求二次函數(shù)的解析式;
(2)直線l沿x軸向右平移,得直線l′,l′與線段OA相交于點(diǎn)B,與x軸下方的拋物線相交于點(diǎn)C,過(guò)點(diǎn)C作CE⊥x軸于點(diǎn)E,把△BCE沿直線l′折疊,當(dāng)點(diǎn)E恰好落在拋物線上點(diǎn)E′時(shí)(圖2),求直線l′的解析式;
(3)在(2)的條件下,l′與y軸交于點(diǎn)N,把△BON繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)135°得到△B′ON′,P為l′上的動(dòng)點(diǎn),當(dāng)△PB′N′為等腰三角形時(shí),求符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E為AB的中點(diǎn),F為BC上任意一點(diǎn),把△BEF沿直線EF翻折,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′落在對(duì)角線AC上,則與∠FEB一定相等的角(不含∠FEB)有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為3,將等腰直角三角板的45°角的頂點(diǎn)放在點(diǎn)B處,直角頂點(diǎn)F在CD的延長(zhǎng)線上,BF與AD交于點(diǎn)G,斜邊與CD交于點(diǎn)E,若CE=1,則DG的長(zhǎng)為( )
A. B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點(diǎn),四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個(gè)直角三角形面積之和與矩形EFGH的面積之比為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com