【題目】已知拋物線y=x2-4與x軸交于A(-2,0)、B(2,0)兩點,點P為拋物線上一點,且S△PAB=4.
(1)在直角坐標系中畫出圖形;
(2)寫出拋物線的對稱軸和頂點坐標;
(3)求P點的坐標.
【答案】(1)見解析(2)對稱軸為x=0,頂點坐標為(0,-4);(3)P點坐標為(,2),(-,2),(,-2),(-,-2),
【解析】
(1)根據(jù)拋物線的解析式即可作圖;
(2)根據(jù)二次函數(shù)的解析式與圖像即可得到對稱軸和頂點坐標;
(3)根據(jù)AB=4,S△PAB=4,得到三角形的高為2,故令y=±2,即可求出P點坐標.
(1)拋物線y=x2-4的圖像如下:
(2)拋物線的對稱軸為x=0,頂點坐標為(0,-4);
(3)∵AB=4,S△PAB=4,得到三角形的高為2,
令y=±2,即x2-4=2,或x2-4=-2
解得x1=,x2=-,x3=,x4=-,
∴P點坐標為(,2),(-,2),(,-2),(-,-2),
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某海盜船以20海里/小時的速度在某海域執(zhí)行巡航任務,當海監(jiān)船由西向東航行至A處使,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時到達B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達C處,求出此時海監(jiān)船與島嶼P之間的距離(即PC的長,結果精確到0.1)(參考數(shù)據(jù):≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A、B兩點,點A在點B左側,點B的坐標為(1,0),C(0,-3)
(1) 求拋物線的解析式;
(2) 若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.
(3) 若點E在x軸上,點P在拋物線上,是否存在以A、C、E、P為頂點且以AC為一邊的平行四邊形?若存在,求點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角三角形中,,,在邊上取一點,使得,點、分別是線段、的中點,連接和,作,交于點,如圖1所示.
(1)請判斷四邊形是什么特殊的四邊形,并證明你的結論;
(2)將繞點順時針旋轉到,交線段于點,交于點,如圖2所示,請證明:;
(3)在第(2)條件下,若點是中點,且,,如圖3,求的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某無人機于空中處探測到目標的俯角分別是,此時無人機的飛行高度為,隨后無人機從處繼續(xù)水平飛行m到達處.
(1)求之間的距離
(2)求從無人機上看目標的俯角的正切值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求證:無論m取何值,原方程總有兩個不相等的實數(shù)根;
(2)若x1,x2是原方程的兩根,且|x1-x2|=2,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點F在DE的延長線上,∠BFE=90°,連接AF、CF,CF與AB交于G.有以下結論:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于點E,若AE=17,BC=8,CD=6,則四邊形ABCD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E在△DBC邊DB上,點A在△DBC內部,∠DAE=∠BAC=90°,AD=AE,AB=AC.給出下列結論,其中正確的是_____(填序號)①BD⊥CE②∠DCB﹣∠ABD=45°③CE﹣BE=AD④BE2+CD2=2(AD2+AB2)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com