【題目】如圖1,一扇窗戶打開(kāi)一定角度,其中一端固定在窗戶邊OM上的點(diǎn)A處,另一端B在邊ON上滑動(dòng),圖2為某一位置從上往下看的平面圖,測(cè)得∠ABO為37°,∠AOB為45°,OB長(zhǎng)為35厘米,求AB的長(zhǎng)(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖).已知拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣1,0)和點(diǎn)B(0,),頂點(diǎn)為C,點(diǎn)D在其對(duì)稱軸上且位于點(diǎn)C下方,將線段DC繞點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)90°,點(diǎn)C落在拋物線上的點(diǎn)P處.
(1)求這條拋物線的表達(dá)式;
(2)求線段CD的長(zhǎng);
(3)將拋物線平移,使其頂點(diǎn)C移到原點(diǎn)O的位置,這時(shí)點(diǎn)P落在點(diǎn)E的位置,如果點(diǎn)M在y軸上,且以O、D、E、M為頂點(diǎn)的四邊形面積為8,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市為慶祝開(kāi)業(yè)舉辦大酬賓抽獎(jiǎng)活動(dòng),凡在開(kāi)業(yè)當(dāng)天進(jìn)店購(gòu)物的顧客,都能獲得一次抽獎(jiǎng)的機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:在一個(gè)不透明的盒子里裝有分別標(biāo)有數(shù)字1、2、3、4的4個(gè)小球,它們的形狀、大小、質(zhì)地完全相同,顧客先從盒子里隨機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,然后把小球放回盒子并攪拌均勻,再?gòu)暮凶又须S機(jī)取出一個(gè)小球,記下小球上標(biāo)有的數(shù)字,并計(jì)算兩次記下的數(shù)字之和,若兩次所得的數(shù)字之和為8,則可獲得50元代金券一張;若所得的數(shù)字之和為6,則可獲得30元代金券一張;若所得的數(shù)字之和為5,則可獲得15元代金券一張;其他情況都不中獎(jiǎng).
(1)請(qǐng)用列表或樹(shù)狀圖(樹(shù)狀圖也稱樹(shù)形圖)的方法(選其中一種即可),把抽獎(jiǎng)一次可能出現(xiàn)的結(jié)果表示出來(lái);
(2)假如你參加了該超市開(kāi)業(yè)當(dāng)天的一次抽獎(jiǎng)活動(dòng),求能中獎(jiǎng)的概率P.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在ABC中,小明按照下列作圖步驟進(jìn)行尺規(guī)作圖(示意圖與作圖步驟如表),那么交點(diǎn)O是△ABC的( )
示意圖 | 作圖步驟 |
(1)分別以點(diǎn)B、C為圓心,大于BC長(zhǎng)為半徑作圓弧,兩弧分別交于點(diǎn)M、N,聯(lián)結(jié)MN交BC于點(diǎn)D; (2)分別以點(diǎn)A、C為圓心,大于AC長(zhǎng)為半徑作圓弧,兩弧分別交于點(diǎn)P、Q,聯(lián)結(jié)PQ交AC于點(diǎn)E; (3)聯(lián)結(jié)AD、BE,相交于點(diǎn)O |
A.外心B.內(nèi)切圓的圓心C.重心D.中心
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B以1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B,圖2是點(diǎn)F運(yùn)動(dòng)時(shí),△FBC的面積y(cm2)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值為( 。
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,以AC為直徑的⊙O交BC于點(diǎn),交AB于點(diǎn)E,點(diǎn)F為AC延長(zhǎng)線上一點(diǎn),且∠BAC=2∠CDF.
(1)求證:DF是⊙O的切線;
(2)連接DE,求證:DE=DB;
(3)若,CF=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一名運(yùn)動(dòng)員推鉛球,已知鉛球行進(jìn)高度y(單位:m)與水平距離x(單位:m)之間的關(guān)系始終是y=ax2+x+(a為常數(shù),a<0).
(1)解釋上述函數(shù)表達(dá)式中“”的實(shí)際意義;
(2)當(dāng)a=﹣時(shí),這名運(yùn)動(dòng)員能把鉛球推出多遠(yuǎn)?
(3)若這名運(yùn)動(dòng)員某次將鉛球推出的距離不小于(2)中的距離,寫出此時(shí)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+4經(jīng)過(guò)點(diǎn)A(﹣3,0)和點(diǎn)B(3,2),與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)點(diǎn)P是拋物線在第一象限內(nèi)一點(diǎn),聯(lián)結(jié)AP,如果點(diǎn)C關(guān)于直線AP的對(duì)稱點(diǎn)D恰好落在x軸上,求直線AP的截距;
(3)在(2)小題的條件下,如果點(diǎn)E是y軸正半軸上一點(diǎn),點(diǎn)F是直線AP上一點(diǎn).當(dāng)△EAO與△EAF全等時(shí),求點(diǎn)E的縱坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com