【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點(diǎn)C.CD⊥x軸,垂足為D,若OB=2OA=3OD=12.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求△CDE的面積;
(3)直接寫出不等式kx+b≤的解集.
【答案】(1)y=﹣,y=﹣2x+12(2)S△CDE=140;(3)x≥10,或﹣4≤x<0
【解析】
(1)根據(jù)三角形相似,可求出點(diǎn)坐標(biāo),可得一次函數(shù)和反比例函數(shù)解析式;
(2)聯(lián)立解析式,可求交點(diǎn)坐標(biāo);
(3)根據(jù)數(shù)形結(jié)合,將不等式轉(zhuǎn)化為一次函數(shù)和反比例函數(shù)圖象關(guān)系.
(1)由已知,OA=6,OB=12,OD=4
∵CD⊥x軸
∴OB∥CD
∴△ABO∽△ACD
∴
∴
∴CD=20
∴點(diǎn)C坐標(biāo)為(﹣4,20)
∴n=xy=﹣80
∴反比例函數(shù)解析式為:y=﹣
把點(diǎn)A(6,0),B(0,12)代入y=kx+b得:
解得:
∴一次函數(shù)解析式為:y=﹣2x+12
(2)當(dāng)﹣=﹣2x+12時(shí),解得
x1=10,x2=﹣4
當(dāng)x=10時(shí),y=﹣8
∴點(diǎn)E坐標(biāo)為(10,﹣8)
∴S△CDE=S△CDA+S△EDA=
(3)不等式kx+b≤,從函數(shù)圖象上看,表示一次函數(shù)圖象不低于反比例函數(shù)圖象
∴由圖象得,x≥10,或﹣4≤x<0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,∠C和∠D的平分線交于M,DM的延長(zhǎng)線交AD于E,試猜想:
(1)CM與DE的位置關(guān)系?
(2)M在DE的什么位置上?并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,等邊△ABC內(nèi)接于⊙O,點(diǎn)P是⌒AB上的任意一點(diǎn),連結(jié)PA,PB,PC.點(diǎn)D是PC上一點(diǎn),連結(jié)DB.
(1) 若PD=PB,求∠PBD的度數(shù);
(2)在(1)的條件下,小麗探究的值,她認(rèn)為只要弄清PA+PB與PC的關(guān)系即可,她的思路可以用以下框圖表示:
根據(jù)小麗的思路,請(qǐng)你完整地書寫本題的探究過(guò)程,并求出的值.
(3)如圖2,把條件“等邊△ABC”改為“正方形ABCD”,其余條件不變,判斷是定值嗎?若是,請(qǐng)求出這個(gè)值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點(diǎn)A(1,3),過(guò)點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)淪:①無(wú)論x取何值,y2的值總是正數(shù);②2a=1;③當(dāng)x=0時(shí),y2﹣y1=4;④2AB=3AC;其中正確結(jié)論是( 。
A. ①②B. ②③C. ③④D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知開(kāi)口向上的拋物線y=ax2+bx+c與x軸交于A(﹣3,0)、B(1,0)兩點(diǎn),與y軸交于C點(diǎn),∠ACB不小于90°.
(1)求點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);
(2)求系數(shù)a的取值范圍;
(3)設(shè)拋物線的頂點(diǎn)為D,求△BCD中CD邊上的高h的最大值.
(4)設(shè)E(-,0),當(dāng)∠ACB=90°,在線段AC上是否存在點(diǎn)F,使得直線EF將△ABC的面積平分?若存在,求出點(diǎn)F的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知正方形的邊長(zhǎng)為a,將此正方形按照下面的方法進(jìn)行剪拼:第一次,先沿正方形的對(duì)邊中點(diǎn)連線剪開(kāi),然后對(duì)接為一個(gè)長(zhǎng)方形,則此長(zhǎng)方形的周長(zhǎng)為___;第二次,再沿長(zhǎng)方形的對(duì)邊(長(zhǎng)方形的寬)中點(diǎn)連線剪開(kāi),對(duì)接為新的長(zhǎng)方形,如此繼續(xù)下去,第n次得到的長(zhǎng)方形的周長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形ABCD的邊長(zhǎng)為1.∠ADC=60°,等邊△AEF兩邊分別交邊DC、CB于點(diǎn)E、F.
(1)特殊發(fā)現(xiàn):如圖1,若點(diǎn)E、F分別是邊DC、CB的中點(diǎn).求證:菱形ABCD對(duì)角線AC、BD交點(diǎn)O即為等邊△AEF的外心;
(2)若點(diǎn)E、F始終分別在邊DC、CB上移動(dòng).記等邊△AEF的外心為點(diǎn)P.
①猜想驗(yàn)證:如圖2.猜想△AEF的外心P落在哪一直線上,并加以證明;
②拓展運(yùn)用:如圖3,當(dāng)△AEF面積最小時(shí),過(guò)點(diǎn)P任作一直線分別交邊DA于點(diǎn)M,交邊DC的延長(zhǎng)線于點(diǎn)N,試判斷是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分9分)如圖,在矩形ABCD中,E是AB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連結(jié)AP并延長(zhǎng)AP交CD于F點(diǎn),
(1)求證:四邊形AECF為平行四邊形;
(2)若△AEP是等邊三角形,連結(jié)BP,求證:△APB≌△EPC;
(3)若矩形ABCD的邊AB=6,BC=4,求△CPF的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com