【題目】如圖,在平面直角坐標(biāo)系中,線段AB的端點(diǎn)坐標(biāo)為A(-2,4),B(4,2),直線y=kx-2與線段AB有交點(diǎn),則K的值不可能是( )
A. -5B. -2C. 3D. 5
【答案】B
【解析】
當(dāng)直線y=kx-2與線段AB的交點(diǎn)為A點(diǎn)時(shí),把A(-2,4)代入y=kx-2,求出k=-3,根據(jù)一次函數(shù)的有關(guān)性質(zhì)得到當(dāng)k≤-3時(shí)直線y=kx-2與線段AB有交點(diǎn);當(dāng)直線y=kx-2與線段AB的交點(diǎn)為B點(diǎn)時(shí),把B(4,2)代入y=kx-2,求出k=1,根據(jù)一次函數(shù)的有關(guān)性質(zhì)得到當(dāng)k≥1時(shí)直線y=kx-2與線段AB有交點(diǎn),從而能得到正確選項(xiàng).
把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,
∴當(dāng)直線y=kx-2與線段AB有交點(diǎn),且過第二、四象限時(shí),k滿足的條件為k≤-3;
把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,
∴當(dāng)直線y=kx-2與線段AB有交點(diǎn),且過第一、三象限時(shí),k滿足的條件為k≥1.
即k≤-3或k≥1.
所以直線y=kx-2與線段AB有交點(diǎn),則k的值不可能是-2.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B兩點(diǎn)在數(shù)軸上,點(diǎn)A表示的數(shù)為-10,OB=3OA,點(diǎn)M以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)A向右運(yùn)動(dòng).點(diǎn)N以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)O向右運(yùn)動(dòng)(點(diǎn)M、點(diǎn)N同時(shí)出發(fā))
(1)數(shù)軸上點(diǎn)B對(duì)應(yīng)的數(shù)是______.
(2)經(jīng)過幾秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等?
(3)當(dāng)點(diǎn)M運(yùn)動(dòng)到什么位置時(shí),恰好使AM=2BN?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB交于點(diǎn)D,則AD的長(zhǎng)為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一定數(shù)目的點(diǎn)或大小相同的圓在等距離的排列下可以形成一個(gè)等邊三角形數(shù)陣.古希臘著名數(shù)學(xué)家畢達(dá)哥拉斯用數(shù),,,,,……這些數(shù)量的(石子),都成功的排成了等邊三角形數(shù)陣..
(問題提出)結(jié)果等于多少?
在圖1所示的等邊三角形數(shù)陣中,前行有個(gè)圓圈,前行有個(gè)圓圈,即,前行有個(gè)圓圈,即,…,則前行所有圓圈個(gè)數(shù)總和為
將圖1旋轉(zhuǎn)至圖2,觀察這兩個(gè)三角形數(shù)陣中同一行圓圈個(gè)數(shù)(如第行的圓圈個(gè)數(shù)分別為個(gè),個(gè)),發(fā)現(xiàn)同一行圓圈個(gè)數(shù)之和均為___________個(gè),由此可得兩個(gè)圖前行圓圈個(gè)數(shù)總和為:___________,因此,___________.
(問題延伸)結(jié)果等于多少?
圖3
圖4
在圖3所示的等邊三角形數(shù)陣中,第行圓圈中的數(shù)為,即,第行兩個(gè)圓圈中數(shù)字的和為.即…,第行個(gè)圓圈中數(shù)字的和為(共個(gè)).即.這樣,該三角形數(shù)陣中所有圓圈中數(shù)字的和為.
將該三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖4所示的三個(gè)三角形數(shù)陣,觀察這三個(gè)三角形數(shù)陣中各行同一位置上圓圈中的數(shù)字(如第行的第一個(gè)圓圈中的數(shù)字分別為,,),發(fā)現(xiàn)相同位置上三個(gè)圓圈中數(shù)字之和均為___________,由此可得,這三個(gè)三角形數(shù)陣所有圓圈中數(shù)字的總和為:___________,因此,___________.
(規(guī)律應(yīng)用)
根據(jù)以上發(fā)現(xiàn),計(jì)算:的結(jié)果為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在數(shù)軸上標(biāo)出數(shù)﹣4.5,﹣2,1,3.5所對(duì)應(yīng)的點(diǎn)A,B,C,D;
(2)C,D兩點(diǎn)間距離=_____;B,C兩點(diǎn)間距離=_____;
(3)數(shù)軸上有兩點(diǎn)M,N,點(diǎn)M對(duì)應(yīng)的數(shù)為a,點(diǎn)N對(duì)應(yīng)的數(shù)為b,那么M,N兩點(diǎn)之間的距離=_____;
(4)若動(dòng)點(diǎn)P,Q分別從點(diǎn)B,C同時(shí)出發(fā),沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng);已知點(diǎn)P的速度是每秒1個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒2個(gè)單位長(zhǎng)度,問①t為何值時(shí)P,Q兩點(diǎn)重合?②t為何值時(shí)P,Q兩點(diǎn)之間的距離為1?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】反比例函數(shù)的圖象如圖所示,以下結(jié)論:
①常數(shù)m<﹣1;
②在每個(gè)象限內(nèi),y隨x的增大而增大;
③若A(﹣1,h),B(2,k)在圖象上,則h<k;
④若P(x,y)在圖象上,則P′(﹣x,﹣y)也在圖象上.
其中正確的是( 。
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△OAB中,OA=OB=10cm,∠AOB=80°,以點(diǎn)O為圓心,半徑為6cm的優(yōu)弧弧MN分別交OA,OB于點(diǎn)M,N.
(1)點(diǎn)P在右半弧上(∠BOP是銳角),將OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)80°得OP′.求證:AP=BP′;
(2)點(diǎn)T在左半弧上,若AT與弧相切,求AT的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一筆直的海岸線l上有AB兩個(gè)觀測(cè)站,A在B的正東方向,AB=2(單位:km).有一艘小船在點(diǎn)P處,從A測(cè)得小船在北偏西60°的方向,從B測(cè)得小船在北偏東45°的方向.(結(jié)果都保留根號(hào))
(1)求點(diǎn)P到海岸線l的距離;
(2)小船從點(diǎn)P處沿射線AP的方向航行一段時(shí)間后,到點(diǎn)C處,此時(shí),從B測(cè)得小船在北偏西15°的方向.求點(diǎn)C與點(diǎn)B之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為2,BD=2,E、F分別是邊AD,CD上的兩個(gè)動(dòng)點(diǎn),且滿足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com