已知:如圖,在⊙O的內(nèi)接四邊形ABCD中,AB是直徑,∠BCD=130°,過D點的切線PD與直線AB交于P點,則∠ADP的度數(shù)為( 。
A.40°B.45°C.50°D.65°

連接BD,
∵∠DAB=180°-∠C=50°,AB是直徑,
∴∠ADB=90°,∠ABD=90°-∠DAB=40°,
∵PD是切線,
∴∠ADP=∠B=40°.
故選A.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC中,∠A=90°,AC=3,AB=4,半圓的圓心O在BC上,半圓與AB、AC分別相切于點D、E,則半圓的半徑為( 。
A.
12
7
B.
7
12
C.
7
2
D.2
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,PA、PB切⊙O于A、B兩點,CD切⊙O于點E,分別交PA、PB于點C、D.若PA、PB的長是關(guān)于x的一元二次方程x2-mx+m-1=0的兩個根,求△PCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,從⊙O外一點A作⊙O的切線AB、AC,切點分別為B、C,且⊙O的直經(jīng)BD=6,連接CD、AO、BC,且AO與BC相交于點E.
(1)求證:CDAO;
(2)設(shè)CD=x,AO=y,求y與x之間的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(3)請閱讀下方資源鏈接內(nèi)容.在(2)的基礎(chǔ)上,若CD、AO的長分別為一元二次方程x2-(4m+1)x+4m2+2=0的兩個實數(shù)根,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB切⊙O于點B,延長AO交⊙O于點C,連接BC.若∠A=40°,則∠C=( 。
A.20°B.25°C.40°D.50°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知P為⊙O外一點,PA,PB分別切⊙O于點A,B,BC為直徑.求證:ACOP.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,PA、PB、DE分別切⊙O于A、B、C,如果△PDE的周長為8,那么PA=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,P是AB延長線上一點,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:
(1)AD=AE
(2)PC•CE=PA•BE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,以BC為直徑的圓交AB于點D,∠ACD=∠ABC.
(1)求證:CA是圓的切線;
(2)若點E是BC上一點,已知AE=6,∠ABC=25°,∠AEC=50°,求圓的直徑.(精確到0.1)

查看答案和解析>>

同步練習冊答案