如圖,△ABC中,∠A=90°,AC=3,AB=4,半圓的圓心O在BC上,半圓與AB、AC分別相切于點(diǎn)D、E,則半圓的半徑為( 。
A.
12
7
B.
7
12
C.
7
2
D.2
3

連接OE,OD,
∵圓O切AC于E,圓O切AB于D,
∴∠OEA=∠ODA=90°,
∵∠A=90°,
∴∠A=∠ODA=∠OEA=90°,
∵OE=OD,
∴四邊形ADOE是正方形,
∴AD=AE=OD=OE,
設(shè)OE=AD=AD=OD=R,
∵∠A=90°,∠OEC=90°,
∴OEAB,
∴△CEO△CAB,
同理△BDO△BAC,
∴△CEO△ODB,
OE
BD
=
CE
OD
,
R
4-R
=
3-R
R

解得:R=
12
7
,
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD平分∠CAB交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥AC于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AC=3,DE=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,AE交⊙O于點(diǎn)F且與⊙O的切線CD互相垂直,垂足為D,連結(jié)AC,OC,CB.有下列結(jié)論:①∠1=∠2;②OCAE;③AF=OC;④△ADC△ACB.其中結(jié)論正確的是______(寫出序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:AB是⊙O的直徑,BC、CD分別是⊙O的切線,切點(diǎn)分別為B、D,E是BA和CD的延長(zhǎng)線的交點(diǎn).
(1)猜想AD與OC的位置關(guān)系,并加以證明;
(2)設(shè)AD•OC的積為S,⊙O的半徑為r,試探究S與r的關(guān)系;
(3)當(dāng)r=2,sin∠E=
1
3
時(shí),求AD和OC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖AF是⊙O的直徑,以O(shè)A為直徑的⊙C與⊙O的弦AB相交于點(diǎn)D,DE⊥OB,垂足為E,求證:
(1)D是AB的中點(diǎn);
(2)DE是⊙C的切線;
(3)BE•BF=2AD•ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形紙片ABCD,點(diǎn)E是AB上一點(diǎn),且BE:EA=5:3,EC=15
5
,把△BCE沿折痕EC向上翻折,若點(diǎn)B恰好落在AD邊上,設(shè)這個(gè)點(diǎn)為F,若⊙O內(nèi)切于以F、E、B、C為頂點(diǎn)的四邊形,則⊙O的面積=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(-1,0),以線段AB上一點(diǎn)P為圓心作圓與OA,OB均相切,則點(diǎn)P的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙P內(nèi)含于⊙O,⊙O的弦AB切⊙P于點(diǎn)C,且ABOP.若陰影部分的面積為10π,則弦AB的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:如圖,在⊙O的內(nèi)接四邊形ABCD中,AB是直徑,∠BCD=130°,過D點(diǎn)的切線PD與直線AB交于P點(diǎn),則∠ADP的度數(shù)為( 。
A.40°B.45°C.50°D.65°

查看答案和解析>>

同步練習(xí)冊(cè)答案