【題目】已知,如圖△ABC和△CDE均為等邊三角形,B、C、D三點(diǎn)在同一條直線上,連接線段BE、AD交于點(diǎn)F,連接CF,
(1)求證:∠FBC=∠FAC.
(2)求∠BFC的度數(shù).
【答案】(1)證明見解析;(2)∠BFC=60°.
【解析】
(1)根據(jù)等邊三角形的性質(zhì)可得∠ECD=∠ABC=60°,AC=BC,CD=CE,利用角的和差關(guān)系可得∠ACD=∠BCE,利用SAS可證明△ACD≌△BCE,根據(jù)全等三角形的性質(zhì)即可得答案;(2)作CG⊥BE于G,CH⊥AD于H,由∠ACB=∠EDC=60°可得AC//ED,根據(jù)平行線的性質(zhì)可得∠CAD=∠ADE,利用等量代換可得∠EBD=∠ADE,根據(jù)三角形外角性質(zhì)可得∠EFD=∠EBD+∠BDF=∠ADE+∠BDF=∠BDE=60°,根據(jù)平角的定義可得∠BFD=120°,由(1)得△ACD≌△BCE,根據(jù)全等三角形對應(yīng)邊上的高對應(yīng)相等可得CG=CH,根據(jù)角平分線的性質(zhì)可得CF是∠BFD的角平分線,即可求出∠BFC的度數(shù).
(1)∵△ABC和△CDE均為等邊三角形,
∴AC=BC,∠ACB=∠ECD=60°,CD=CE,
∴∠ACB+∠ACE=∠ECD+∠ACE,即∠ACD=∠BCE,
在△ACD和△BCE中,,
∴△ACD≌△BCE,
∴∠EBC=∠DAC,即∠FBC=∠FAC.
(2)∵∠ACB=∠EDC=60°,
∴AC//DE,
∴∠CAD=∠ADE,
∵∠CAD=∠EBD,
∴∠EBD=∠ADE,
∴∠EFD=∠EBD+∠BDF=∠ADE+∠BDF=∠EDB=60°,
∴∠BFD=180°-∠EFD=120°,
∵△ACD≌△BCE,CG、CH分別是對應(yīng)邊BE、AD的高,
∴CG=CH,
∴CF是∠BFD的角平分線,
∴∠BFC=∠BFD=60°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(知識背景)
我們在第十一章《三角形》中學(xué)習(xí)了三角形的邊與角的性質(zhì),在第十二章《全等三角形》中學(xué)習(xí)了全等三角形的性質(zhì)和判定,在十三章《軸對稱》中學(xué)習(xí)了等腰三角形的性質(zhì)和判定.在一些探究題中經(jīng)常用以上知識轉(zhuǎn)化角和邊,進(jìn)而解決問題.
1.(問題初探)
如圖(1),△ABC中,∠BAC=90°,AB=AC,點(diǎn)D是BC上一點(diǎn),連接AD,以AD為一邊作△ADE,使∠DAE=90°,AD=AE,連接BE,猜想BE和CD有怎樣的數(shù)量關(guān)系,并說明理由.
2.(類比再探)
如圖(2),△ABC中,∠BAC=90°,AB=AC,點(diǎn)M是AB上一點(diǎn),點(diǎn)D是BC上一點(diǎn),連接MD,以MD為一邊作△MDE,使∠DME=90°,MD=ME,連接BE,則∠EBD=________.(直接寫出答案,不寫過程,但要求作出輔助線)
3.(方法遷移)
如圖(3),△ABC是等邊三角形,點(diǎn)D是BC上一點(diǎn),連接AD,以AD為一邊作等邊三角形ADE,連接BE,則BE、BC之間有怎樣的數(shù)量關(guān)系?________(直接寫出答案,不寫過程).
4.(拓展創(chuàng)新)
如圖(4),△ABC是等邊三角形,點(diǎn)M是AB上一點(diǎn),點(diǎn)D是BC上一點(diǎn),連接MD,以MD為一邊作等邊三角形MDE,連接BE.猜想∠EBD的度數(shù),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過原點(diǎn)的拋物線與x軸交于另一點(diǎn),該點(diǎn)到原點(diǎn)的距離為2,且該拋物線經(jīng)過(3,3)點(diǎn),則該拋物線的解析式為____ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( 。
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)某中學(xué)1000名學(xué)生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:
成績分組 | 頻數(shù) | 頻率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合計(jì) | ■ | 1 |
(1)寫出a,b,c的值;
(2)請估計(jì)這1000名學(xué)生中有多少人的競賽成績不低于70分;
(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識宣傳活動,求所抽取的2名同學(xué)來自同一組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=2∠C,AP和BQ分別為∠BAC和∠ABC的角平分線,若△ABQ的周長為18,BP=4,則AB的長為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ ABC中,∠ ABC=90°,AB=BC,D在邊 AC上,AE┴ BD于 E.
(1) 如圖 1,作 CF⊥ BD于 F,求證:CF-AE=EF;
(2) 如圖 2,若 BC=CD,求證:BD=2AE ;
(3) 如圖3,作 BM ⊥BE,且 BM=BE,AE=2,EN=4,連接 CM交 BE于 N,請直接寫出△BCM的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span>的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.又例如:∵22<7<3,即2<<3,∴的整數(shù)部分為2,小數(shù)部分為﹣2.
請解答:
(1) 的整數(shù)部分是 ,小數(shù)部分是 .
(2)如果的小數(shù)部分為a, 的整數(shù)部分為b,求a+b-的值;
(3)已知:x是3+的整數(shù)部分,y是其小數(shù)部分,請直接寫出x﹣y的值的相反數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)畫出△ABC關(guān)于y軸對稱的圖形△A′B′C′,并寫出點(diǎn)A′、B'、C′的坐標(biāo);
(2)在圖中找一點(diǎn)D,以D、B、C為頂點(diǎn)畫三角形,使它與△ABC全等,請畫出所有符合條件的△DBC(點(diǎn)D與點(diǎn)A重合除外),并直接寫出點(diǎn)D的坐標(biāo).(提示:當(dāng)點(diǎn)D不唯一時,可用D1、D2、D3等加以區(qū)別)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com