【題目】如圖,已知一次函數(shù)y=﹣ x+b的圖象經(jīng)過點A(2,3),AB⊥x軸,垂足為B,連接OA.

(1)求此一次函數(shù)的解析式;
(2)設(shè)點P為直線y=﹣ x+b上的一點,且在第一象限內(nèi),經(jīng)過P作x軸的垂線,垂足為Q.若SPOQ= SAOB , 求點P的坐標.

【答案】
(1)

解:∵一次函數(shù)y=﹣ x+b的圖象經(jīng)過點A(2,3),

∴3=(﹣ )×2+b,

解得b=4,

故此一次函數(shù)的解析式為:y=﹣ x+4


(2)

解:設(shè)P(p,d),p>0,

∵點P在直線y=﹣ x+4的圖象上,

∴d=﹣ p+4①,

∵SPOQ= SAOB= × ×2×3,

pd= ②,

①②聯(lián)立得, ,

解得 ,

∴P點坐標為:(3, )或(5,


【解析】(1)直接把點A(2,3)代入一次函數(shù)y=﹣ x+b即可求出b的值,進而得出一次函數(shù)的解析式;(2)設(shè)P(p,d),p>0,再根據(jù)點P在一次函數(shù)的圖象上及SPOQ= SAOB , 即可得出關(guān)于p、d的方程組,求出p、d的值即可.
【考點精析】關(guān)于本題考查的確定一次函數(shù)的表達式,需要了解確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC中,AB=20,AC=15,BC邊上的高為12,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半徑至少為 cm的圓形紙片所覆蓋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣3,0),B(1,0)兩點,與y軸交于點C.

(1)求這個二次函數(shù)的關(guān)系解析式;
(2)點P是直線AC上方的拋物線上一動點,是否存在點P,使△ACP的面積最大?若存在,求出點P的坐標;若不存在,說明理由;

(3)在平面直角坐標系中,是否存在點Q,使△BCQ是以BC為腰的等腰直角三角形?若存在,直接寫出點Q的坐標;若不存在,說明理由;
(4)點Q是直線AC上方的拋物線上一動點,過點Q作QE垂直于x軸,垂足為E.是否存在點Q,使以點B、Q、E為頂點的三角形與△AOC相似?若存在,直接寫出點Q的坐標;若不存在,說明理由;
(5)點M為拋物線上一動點,在x軸上是否存在點Q,使以A、C、M、Q為頂點的四邊形是平行四邊形?若存在,直接寫出點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l∥AB,l與AB之間的距離為2.C、D是直線l上兩個動點(點C在D點的左側(cè)),且AB=CD=5.連接AC、BC、BD,將△ABC沿BC折疊得到△A′BC.下列說法:①四邊形ABCD的面積始終為10;②當A′與D重合時,四邊形ABDC是菱形;③當A′與D不重合時,連接A′、D,則∠CA′D+∠BCA′=180°;④若以A′、C、B、D為頂點的四邊形為矩形,則此矩形相鄰兩邊之和為3或7.其中正確的是( 。

A. ①②④ B. ①③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD的對角線AC、BD相交于點O,OB=OD,BF=DE,AECF.

(1)求證:OAE≌△OCF;

(2)若OA=OD,猜想:四邊形ABCD的形狀,請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蝸牛從某點開始沿一東西方向直線爬行,規(guī)定向東爬行的路程記為正數(shù),向西爬行的路程記為負數(shù).爬過的各段路程依次為(單位:厘米):,,,,,,

通過計算說明蝸牛是否回到起點

蝸牛離開出發(fā)點最遠時是多少厘米?

在爬行過程中,如果每爬厘米獎勵粒芝麻,則蝸牛一共得到多少粒芝麻?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某個體水果店經(jīng)營某種水果,進價/千克,售價/千克,日至日經(jīng)營情況如下表:

日期

購進

售出

損耗

日的庫存為,則日的庫存為________;

日經(jīng)營情況看,當天是賺還是賠了?

每天交衛(wèi)生費元,則日該個體戶共賺多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(﹣3,1),B(1, )是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點.

(1)求反比例函數(shù)和一次函數(shù)的表達式;

(2)根據(jù)圖象直接寫出使一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值的的取值范圍.

查看答案和解析>>

同步練習冊答案