【題目】如圖所示,直線l1 經(jīng)過A,B兩點(diǎn),直線l2的表達(dá)式為,且與x軸交于點(diǎn)D,兩直線相交于點(diǎn)C.
(1)求直線l1的表達(dá)式;
(2)求△ADC的面積;
(3)在直線l1上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
【答案】(1);(2)3;(3)P點(diǎn)的坐標(biāo)為(6,2)
【解析】(1)設(shè)直線l1的不等式為y=kx+b,將A(4,0),B(3,-1)代入得k,b可得一次函數(shù)的解析式;
(2)令y=0,代入直線l2的不等式y(tǒng)=-2x+2,可得D點(diǎn)坐標(biāo),根據(jù)兩直線相交的C點(diǎn)坐標(biāo),由三角形的面積公式可得結(jié)果;
(3)根據(jù)△ADP與△ADC的面積相等可得點(diǎn)P的縱坐標(biāo),在代入直線l1的表達(dá)式可得點(diǎn)P的橫坐標(biāo),可得點(diǎn)P的坐標(biāo).
解:(1)設(shè)直線l1的表達(dá)式為,將A(4,0),B(3,-1)代入得
解得
∴直線l1的表達(dá)式為
(2)當(dāng)y=0時(shí), ,∴x=1
∴D(1,0)
解方程組得
∴C(2,-2)
∴
(3)P點(diǎn)的坐標(biāo)為(6,2)
“點(diǎn)睛”此題主要考查了一次函數(shù)的綜合應(yīng)用以及待定系數(shù)法求一次函數(shù)解析式,根據(jù)已知結(jié)合圖形得出點(diǎn)P的縱坐標(biāo)與點(diǎn)C的縱坐標(biāo)的絕對(duì)值相等是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】10名學(xué)生體檢測(cè)體重,以50千克為基準(zhǔn),超過的數(shù)記為正,不足的數(shù)記為負(fù),稱得結(jié)果如下(單位:千克):2, 3, -7.5,-3, 5, -8, 3.5, 4.5, 8, -1.5
這10名學(xué)生的總體重為多少?10名學(xué)生的平均體重為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是Rt△ABC中斜邊BC上的一點(diǎn),且BD=AB,過D作BC的垂線,交AC于點(diǎn)E,若AE=5cm,DC=12 cm,則CE的長(zhǎng)為_____________ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形三邊垂直平分線的交點(diǎn)位于三角形的( 。
A.三角形內(nèi)B.三角形外C.斜邊的中點(diǎn)D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
第1個(gè)等式:a1=
第2個(gè)等式:a2=
第3個(gè)等式:a3=
第4個(gè)等式:a4=
……
請(qǐng)回答下列問題:
(1)按上述等式的規(guī)律,列出第5個(gè)等式:a5= =
(2)用含n的式子表示第n個(gè)等式:an= =
(3)求a1+a2+a3+a4+…+a2017的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上.
(1)B點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)為 ;
(2)將△AOB向左平移3個(gè)單位長(zhǎng)度得到△A1O1B1,請(qǐng)畫出△A1O1B1;
(3)在(2)平移過程中,線段OA所掃過的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com